首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The study examined the effects of repeated strenuous live-fire drills on cardiovascular and psychological responses of male recruit firefighters (n = 7). Participants performed three trials of a standardized set of tasks while inside a training structure containing several live fires. Measurements of heart rate, aortic blood flow, perceived exertion, respiratory and thermal distress, reaction time, and error rate were obtained before testing, after each trial and during recovery. Heart rate increased significantly during each of the trials, reaching age-predicted maximal values. Stroke volume was significantly lower after trial 3 versus trial 1 and prevalues. Perceived exertion, respiratory distress, and thermal distress all increased, indicating greater stress following firefighting activities. Reaction time and error rate did not change significantly, but there was a tendency for more errors following trials 2 and 3 versus trial 1. The training drills resulted in considerable physiological and psychological strain, which has the potential to impair cognitive function. Firefighters are encouraged to take all possible steps to mitigate the extent of the cardiovascular strain.  相似文献   

2.
《Ergonomics》2012,55(8):1141-1154
The purpose of this study was to examine selected physiological and psychological responses to strenuous live-fire drills in different configurations of protective firefighting gear. Career firefighters (n = 10) performed three sets of firefighting drills in a training structure that contained live fires in two different configurations of firefighting gear. On separate days subjects wore: (a) the NFPA 1500 (1987) standard configuration, and (b) a hip-boot configuration of the firefighting gear. Physiological and psychological measurements were recorded pre-activity and at the end of each trial. Repeated measures ANOVA revealed a strong trend for performance time to be greater in the 1500 gear than in the hipboot gear. There was a significant Time × Gear interaction for tympanic membrane temperature, with temperature being greater in the 1500 gear. Perceptions of effort and thermal sensations were also greater in the 1500 gear than in the hip-boot configuration of the gear. There was little difference in mean performance on cognitive function measures between the two gear configurations, but there was greater variability in performance in the 1500 gear. These data suggest that performing strenuous firefighting drills in the current NFPA 1500 standard configuration results in longer performance time, greater thermal strain, and greater perception of effort and thermal sensation.  相似文献   

3.
4.
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric.  相似文献   

5.
ObjectiveThere is limited work on the physiological demands of lifting activities at different altitudes and different lifting frequencies when wearing different types of shoes. This study aimed to examine the heart rate variability (HRV) and ventilation responses of individuals in normobaric hypoxia (ambient oxygen of 15%, 18%, and 21%) while doing lifting tasks and wearing three types of different safety shoes (“light, medium, and heavy-duty”) at two different lifting frequencies (“1 lift/min and 4 lifts/min”).MethodsUsing an experimental study design, two sessions were conducted by ten male university students that included an acclimatization and training session followed by experimental lifting. The study used a four-way repeated measures design (4 independent and twenty-one responses, i.e., twelve HRV and nine ventilation responses).ResultsThe findings highlighted substantial low HRV and ventilation parameters for the light workload stress in the form of higher ambient oxygen content and lowered lifting frequency while wearing light safety shoe type. It also presented an increase in the physical demand, followed by increased lifting frequency and replication with increased mean heart rate and decreased mean RR, very low frequency (VLF) power, low frequency (LF) power, and low frequency to a high-frequency ratio (LF/HF).ConclusionOur findings suggest that if a safe lifting load limit is applied for workers in the industrial environment, the risk of musculoskeletal disorders will be mainly decreased, and the rate of production will be better with ambient oxygen content and appropriate safety shoes. This research would safeguard industrial workers' physical capacities and future health risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号