首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sesto ME  Radwin RG  Richard TG 《Ergonomics》2005,48(7):807-820
Dynamic mechanical response parameters (stiffness, damping and effective mass), physiological properties (strength and swelling) and symptoms of the upper limb were measured before power tool operation, immediately following and 24 h after power tool operation. Tool factors, including peak torque (3 Nm and 9 Nm) and torque build-up time (50 ms and 250 ms), were controlled in a full factorial design. Twenty-nine inexperienced power hand tool users were randomly assigned to one of four conditions and operated a pistol grip nutrunner four times per min for 1 h in the laboratory. Isometric strength decreased immediately following tool use (15%) (p < 0.01) and 24 h later (9%) (p < 0.05). Mechanical parameters of stiffness (p < 0.05) and effective mass (p < 0.05) were affected by build-up time. An average decrease in stiffness (43%) and effective mass (57%) of the upper limb was observed immediately following pistol grip nutrunner operation for the long (250 ms) build-up time. A previously developed biomechanical model was used to estimate handle force and displacement associated with the tool factors in the experiment. The conditions associated with the greatest predicted handle force and displacement had the greatest decrease in mechanical stiffness and effective mass, and the greatest increase in localized discomfort.  相似文献   

2.
Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47 ms for flexors and 116 ms for extensors. The results suggest that right angle nutrunner torque reaction forces can affect extrinsic hand muscles in the forearm, and hence grip exertions, by way of a reflex response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Lin JH  Radwin RG  Fronczak FJ  Richard TG 《Ergonomics》2003,46(12):1161-1177
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.  相似文献   

4.
The objective of this study is to investigate the workstation and tool effects on the responses of the powered hand tool operator reacting against the impulsive reaction forces that may be associated with upper extremity musculoskeletal disorders. The study demonstrated a means of direct measurement of force at the interface between the tool and the operator. Fifteen experienced male operators performed three independent work configurations: pistol grip and right angle tools used on the horizontal surface and pistol grip tools used on the vertical surface, in the laboratory. A full factorial experiment consisting of 36 conditions was designed to examine the effects of working height, distance, tool, and fastener joint hardness on handle displacement and grip forces. The results indicate that operator responses were affected by different factors depending on the work configuration. When pistol grip tools were used on the vertical surface, the mean handle displacement decreased from 9.9 degrees to 7.3 degrees as the working height increased from 30 cm below shoulder to 30 cm above shoulder. When right angle tools were used, the greatest handle displacement (51.1mm) and grip force (84.7% MVC) during torque reactions were measured at 30 cm below elbow and 40% forward reach away from the operator. This study provides quantitative information that can be used for workstation design and tool selection to reduce the torque reaction experienced by powered nutrunner operators.  相似文献   

5.
《Ergonomics》2012,55(2):188-206
This study used a computer-controlled electric right angle nutrunner to investigate the relative effects of different power hand tool and process parameters on operator muscular exertions, handle stability and subjective ratings of perceived exertion. Target torque (25, 40 and 55 Nm), torque build-up time (35, 150, 300, 500 and 900 ms), and workstation orientation (horizontal and vertical) were studied. Dependent variables included EMG activity of the finger flexors, biceps, and triceps, handle velocity and displacement, work done on the tool-hand system and power involved in doing work, subjective ratings of perceived exertion, and task acceptance. Six inexperienced subjects (three females and three males) participated. Ten replications were performed for each combination of experimental conditions. The consequences of increasing the torque reaction force were greater handle instability and perceived exertion. The effect of torque buildup time on handle kinematics, muscular activity and perceived exertion was not monotonic. Among five build-up times tested, the hand was most unstable (greater peak handle velocity and power against the operator) for a 150 ms buildup time. Greater peak handle displacement, total work against the operator and average EMG were observed for 150 and 300 ms build-up times than for other build-up time conditions. Integrated EMG and EMG latency significantly increased as build-up time increased. Average EMG latency between the onset of EMG burst and the onset of torque build-up was 40 ms for a 35 ms build-up time and 330 ms for a 900 ms build-up time. Subjective ratings of perceived exertion were the least when torque build-up time was 35 ms, however greater peak torque variance was associated with this condition.  相似文献   

6.
《Ergonomics》2012,55(12):1161-1177
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.  相似文献   

7.
《Ergonomics》2012,55(1):146-159
The aim of this work was to investigate physiological responses to torque reaction forces produced by hand-held power tools used to tighten threaded fasteners. Such tools are used repetitively by workers in many industries and are often associated with upper limb musculoskeletal complaints. The tools considered for stimulation in this study had straight handles and required from 100 to 400 ms to tighten fasteners to a peak torque of 1.0 to 2.5 Nm and from 50 to 150 ms for the torque to decay to zero. A tool stimulator was constructed to apply a programmed torque profile to a handle similar to that of a straight in-line power screwdriver. Wrist flexor and extensor surface EMGs and handle position were recorded as subjects held handles subjected to controlled torque loads that tended to flex the wrist. It was found that: (1) very high EMG values occurred even though torques were of short duration (50 to 600 ms) and the peak torques were low (7–28% of maximum strength); (2) high EMGs in anticipation of torque are directly related to torque build-up rate and peak torque; (3) high peak flexor and extensor EMGs during and following torque onset are related to torque build-up rate and peak torque; (4) minimum time of peak EMGs of 72–87 ms following the onset of torques with 50 ms build-up suggests the contribution of an extensor muscle stretch reflex component; delayed peak for longer build-ups suggests a central control of muscle force in response to torque; (5) angular excursions of handles increase with decreasing torque build-up time and increasing torque magnitude causes increasing eccentric work; (6) the results show that the slow torque build-up times (450 ms) correspond to minimum peak EMGs; and (7) accumulated EMGs increase with increasing torque and torque build-up times. Further studies are needed to evaluate fatigue and musculoskeletal injuries associated with prolonged periods of tool use.  相似文献   

8.
《Ergonomics》2012,55(6):859-876
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9°, while novice users allowed 11.5°. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

9.
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9 degrees, while novice users allowed 11.5 degrees. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

10.
McGorry RW  Lin JH 《Ergonomics》2007,50(9):1392-1403
Thirty male volunteers participated in a study evaluating the effect of workspace envelope (work height and reach distance) and handle orientation on grip force capacity. Maximum voluntary power grip exertions were recorded using instrumented tool handles under three conditions: a pistol grip tool handle oriented horizontally and vertically and a right angle tool handle oriented horizontally. Significant main effects of handle height and reach location on normalized grip force capacity were observed with the horizontally oriented pistol grip and right angle handles, whereas only an interaction effect was observed with the vertically oriented pistol grip handle. Comparison of results to scores produced with a job assessment tool (RULA) is included as an appendix. The proposed methodology can provide information useful to job, workstation or tool design directed toward best accommodating the physical capacities of workers performing hand tool tasks.  相似文献   

11.
Powered hand tools have the potential to produce reaction forces that may be associated with upper extremity musculoskeletal disorders. In this study, subjective ratings of discomfort and acceptability of reaction forces were collected in an attempt to identify their associations with factors such as work location, and response covariates such as grip force and tool handle displacement. Three work configurations using pistol grip and right angle pneumatic nutrunners on horizontal and vertical surfaces were set up in the laboratory. Twenty healthy right-handed male participants operated four tools at nine locations and the corresponding subjective responses were collected. The results indicate that normalized grip force during the torque buildup period was a significant factor for both subjective ratings. For the unacceptable torque reactions across the three tool configurations, the ratio of hand moment impulse over tool torque impulse was significantly greater than for the acceptable reactions. For pistol grip tools used on the vertical surface, as the working height increased 30 cm, the odds of an unacceptable rating over an acceptable rating increased 1.6 times. Prediction models for subjective ratings of discomfort and acceptability provide insight regarding either workstation design or exposure control. These models can further be used to establish exposure limits based on handle displacement and grip force.  相似文献   

12.
《Ergonomics》2012,55(9):1392-1403
Thirty male volunteers participated in a study evaluating the effect of workspace envelope (work height and reach distance) and handle orientation on grip force capacity. Maximum voluntary power grip exertions were recorded using instrumented tool handles under three conditions: a pistol grip tool handle oriented horizontally and vertically and a right angle tool handle oriented horizontally. Significant main effects of handle height and reach location on normalized grip force capacity were observed with the horizontally oriented pistol grip and right angle handles, whereas only an interaction effect was observed with the vertically oriented pistol grip handle. Comparison of results to scores produced with a job assessment tool (RULA) is included as an appendix. The proposed methodology can provide information useful to job, workstation or tool design directed toward best accommodating the physical capacities of workers performing hand tool tasks.  相似文献   

13.
Lin JH  Radwin RG  Richard TG 《Ergonomics》2001,44(3):295-312
The study considers the dynamic nature of the human power handtool operator as a single degree-of-freedom mechanical torsional system. The hand and arm are, therefore, represented as a single mass, spring and damper. The values of these mechanical elements are dependent on the posture used and operator. The apparatus used to quantify these elements measured the free vibration frequency and amplitude decay of a known system due to the external loading of the hand and arm. Twenty-five subjects participated in the investigation. A full factorial experiment tested the effects on the three passive elements in the model when operators exerted maximum effort for gender, horizontal distance (30, 60, 90 cm), and vertical distance (55, 93, 142 190 cm) from the ankles to the handle. The results show that the spring element stiffness and mass moment of inertia changed by 20.6 and 44.5% respectively with vertical location (p<0.01), and 23.6 and 41.2% respectively with horizontal location (p<0.01). Mass moment of inertia and viscous damping for males were 31.1 and 38.5% respectively greater than for females (p<0.01). Tool handle displacement and hand force during torque build-up can, therefore, be predicted based on this model for different tool and workplace parameters. The biomechanical model was validated by recalling five subjects and having them operate a power handtool for varying horizontal distances (30, 60, 90 cm), vertical distances (55, 93, 142 cm), and two torque build-up times (70, 200 ms). Tool reaction displacement was measured using a 3D-motion analysis system. The predictions were closely correlated with these measurements (R = 0.88), although the model underpredicted the response by 27%. This was anticipated since it was unlikely that operators used maximal exertions for operating the tools.  相似文献   

14.
Lin JH  McGorry RW  Maikala RV 《Ergonomics》2012,55(3):361-370
Repetitive use of hand-held power tools is associated with work-related upper extremity musculoskeletal disorders. Using a pneumatic nutrunner, 21 men completed twelve 360 repetitive fastener-driving sessions on three joints (hard, soft and control) at slow and fast pace, and two different work:rest patterns. Handgrip force and perceived exertions were collected throughout each session. For the control joint, the mean grip force exerted was 39.6% of maximum voluntary exertion (MVE) whereas during hard and soft joint sessions it was 48.9% MVE and 56.9% MVE, respectively. Throughout each session, the grip force decreased, more while operating soft and hard joints as compared with the control joint (regression slope: ?0.022 and ?0.023, compared with ?0.007 N/drive, respectively), suggesting considerable upper extremity muscular effort by participants during torque buildup. Fast work pace resulted in higher average grip forces by participants but a greater decrease in the force as the session progressed. Providing rest breaks reduced perceived exertions. The findings gain additional knowledge for assembly task design to possibly reduce the hand/arm injury risks for the operator.

Practitioner Summary: Powered hand tools are widely used in assembly and manufacturing industries. However, the nature of their repetitive use on human operator biomechanical and perceptual responses is not fully understood. This study examined work-related risk factors such as joint torque, pace and work:rest ratios on powered hand tool performance.  相似文献   

15.
In the process of tightening a joint, the angled nutrunner acts on the operator with a torque reaction in the final stages of the tightening sequence. In the following series of experiments, the torque reaction of a machine acting on various joints is studied. A distinctive feature of the torque reaction is that the handle of the angled nutrunner causes a rapid displacement. The amplitude and time aspect of this displacement depend on the stiffness of the joint (whether it is hard or soft), and the movement of the handle depends on how the operator is holding it. How the operator responds to the torque reaction depends upon, among other things, the displacement amplitude as well as the torque level of the machine. Because of this, the displacement amplitude can be used as a measure of the operator's discomfort.  相似文献   

16.
The purpose of this study was to compare the ergonomic demands associated with air and DC pistol grip hand tool use. Seven channels of EMG data were collected from 15 male and 15 female subjects to estimate the muscular demands on the forearms, biceps, shoulders and neck. An accelerometer was also used to estimate the torque reaction transmitted to the hand. Subjects performed drilling with five pistol grip tools obtained from two tool suppliers. This resulted in two air tools, one non-transducerized electric (DCNT) and two transducerized electric (DCT) tools. Three types of joints were simulated: (1) , (2) and (3) . Subjects were asked to drill five joints to completion within a period, and to repeat this five times for each condition (25 joints per condition). Results of a three factor repeated measures ANOVA indicated that, in comparison to air tools, pistol grip DC tools do not pose an additional risk of musculoskeletal injury to the upper limbs. In fact, the data suggest that the use of pistol grip DC tools will reduce the demands on the forearms during horizontal drilling.

Relevance to industry

Powered hand tools can potentially cause upper limb injuries due to the postures, repetitions, and forces associated with their use. However, while DC tools have engineering advantages (loop monitoring of the tool, and increased quality control) the ability to implement ergonomic strategies also appears to reduce the muscle demands associated with tool use.  相似文献   

17.
This study uses a previously developed single-degree-of-freedom mechanical model to predict the power hand tool operator handle kinematic response to impulsive reaction forces (Lin, 2001). The model considers the human operator as a lumped parameter passive mechanical system, consisting of stiffness, mass moment of inertia, and viscous damping elements. Six power nutrunners were operated by 9 volunteers (3 men, 6 women) in the laboratory, and corresponding handle kinematics were compared against model predictions. A full-factorial experiment considered torque buildup time and work location. Normalized forearm flexor EMG was measured to quantify muscle exertions and used to proportionally adjust the stiffness parameter. The measured handle displacement for actual tool operation strongly correlated to the model predictions (R = .98) for all handle configurations. The overall model prediction error was 3% for predicting tool handle responses to impulsive reaction forces for various tool and workstation parameters. This model should make it possible for designers to identify conditions that minimize the torque reaction experienced by power hand tool operators.  相似文献   

18.
Abstract

This study compared the efficacy of an ice vest comprising of water (WATER) or a water-carbon (CARBON) emulsion on thermophysiological responses to strenuous exercise in the heat. Twelve male cyclists completed three 50-minute constant workload trials (55% of peak power output, ambient temperature 30.4?±?0.6°C) with WATER, CARBON, and without ice vest (CONTROL), respectively. The increase in core body temperature (Tcore) was lower in WATER at 40 (?0.49?±?0.34 °C) and 50?minutes (?0.48?±?0.48 °C) and in CARBON at 30 (?0.41?±?0.48 °C), 40 (?0.54?±?0.51 °C), and 50?minutes (?0.67?±?0.62 °C) as compared to CONTROL (p?<?0.05, ES > 0.8). While heart rate and blood lactate kinetics did not differ between the conditions, statistical main effects in favour of both WATER and CARBON were found for thermal sensation (condition p?<?0.001 and interaction p?<?0.01) and rating of perceived exertion (condition p?<?0.05). Per-cooling with CARBON and WATER similarly reduced Tcore but not physiological strain during prolonged exercise in the heat.

Practitioner Summary: Exercise in the heat is characterised by increases in thermophysiological strain. Both per-cooling with a novel carbon-based and a conventional water-based ice vest were shown to reduce core temperature significantly. However, due to its lower mass, the carbon-based system may be recommended especially for weight-bearing sports.  相似文献   

19.
《Ergonomics》2012,55(3):324-329
Carrying loads close to the trunk with a backpack causes a restrictive type of change in lung function in which Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1?s (FEV1) are reduced without a corresponding decrement in the FEV1.FVC???1 %. It is not known whether this is due to the weight of the load acting on the chest or to the tightness of fit of the shoulder and chest straps and waist belt of the pack harness. This study examined FVC, FEV1, FEV1.FVC???1 %, peak expiratory flow (PEF), forced expiratory flow between 0.2 and 1.2?s (FEF0.2?–?1.2) after the start of expiration and between 25 and 75% of each FVC (FEF25?–?75%) in 12 healthy males wearing a 15?kg backpack in which the shoulder and chest straps and hip belt were loosened by 3?cm from a ‘comfort fit’ to achieve a ‘loose pack’ fit (LPF) and tightened by 3?cm from CF to achieve a ‘tight pack’ fit (TPF). In comparison with the control condition of no pack, a loose pack fit significantly reduced FVC (by 3.6%, p?<?0.01), FEV1 (by 4.3%, p?<?0.01) and FEF25?–?75% (by 8.4%, p?<?0.01). A tight pack fit significantly reduced FVC (by 8.1%, p?<?0.01) and FEV1 (by 9.1%, p?<?0.001). It also significantly reduced FEF0.2?–?1.2 (by 7.3%, p?<?0.05) and FEF25?–?75% (by 21%, p?<?0.01). In comparison with a loose pack fit, the tight pack fit was associated with a significantly lower FVC (by 4.6%, p?<?0.01), FEV1 (by 5.0%, p?<?0.01), FEF25?–?75% (by 13.8%, p?<?0.01) and a fall in FEF0.2?–?1.2 (by 5.5%). The latter was approaching significance (p?=?0.077). There were no significant changes in FEV1.FVC???1% and PEF. It is concluded that tightening the fit of a backpack significantly affects lung function in a manner that is typical of a restrictive change in lung function and is very similar in pattern to that of wearing a loosely fitted loaded backpack. The effect of tightness of fit is additional to that due to the weight of the load alone and may also reduce expiratory flow at low lung volumes.  相似文献   

20.
《Ergonomics》2012,55(6):703-721
This experiment investigated maximum forearm pronation and supination torques and forearm discomfort, for intermittent torque exertions in supine and prone forearm angles for the right arm. Twenty-two subjects participated in the study that comprised two parts, the first of which involved measurement of maximum forearm torque in both twisting directions at five forearm angles including neutral. This was followed by endurance tests at 50% maximum voluntary contraction (MVC) in both directions. The second part of the study involved subjects performing 5-min duration of intermittent isometric torque exercises at 20% MVC in both directions at 11 forearm angles. Regression equations were developed that accurately predict torques as a function of forearm angle expressed as a percentage of maximum motion. Analysis of the discomfort data for the intermittent isometric torque exertions indicated that both forearm angle and twisting direction significantly affected forearm discomfort (p?<?0.001). A significant two-way interaction (p?<?0.01) was identified between forearm angle and direction for supine forearm angles only. The results provide important strength and discomfort models for the design of tasks involving static or repetitive forearm twisting. Such tasks have a strong association with forearm injuries including lateral and medial epicondylitis. These results provide needed data on the risk factors associated with these injuries so they can be prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号