首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电动汽车无线充电系统在耦合机构发生偏移后,存在输出电压波动大和效率降低的问题。为此,该文提出基于DDQ/DD耦合机构(原边DDQ、副边DD耦合机构)和双路LCC/S补偿拓扑(原边DD和Q线圈均采用LCC补偿,副边DD线圈采用S补偿)的强抗偏移无线充电系统。为减小补偿元件应力,提高系统抗偏移性能,提出基于电压波动率最小原则的DDQ/DD耦合机构和补偿参数联合优化设计方法。为验证理论分析,搭建输出功率为1kW的实验样机,所用耦合机构原、副边外尺寸分别为550×550mm~2、350×350mm~2,横向偏移150mm过程中,系统输出电压波动率低至7.43%。  相似文献   

2.
电动汽车动态无线充电技术,即在行驶路面间隔铺设一系列能量发射线圈,在电动汽车上安装能量接收线圈,对行驶中的汽车持续充电,从而增加电动汽车的续航里程。逆变器的软开关技术能够很大程度上减小系统损耗,对于动态无线充电系统而言,耦合系数的动态变化和次级后级DC/DC变换器均会对逆变器开关管的工作状态造成影响。分析了系统工作原理和逆变器软开关的实现条件。通过在次级后级DC/DC变换器采用双闭环控制策略,在提高动态无线充电系统输出功率和传输效率的基础上,保证初级逆变器工作于软开关状态。搭建了动态无线充电系统实物平台,验证了动态无线充电系统中的软开关及高输出功率和传输效率的特性。  相似文献   

3.
为了简化磁耦合谐振式无线充电系统电路设计和控制的复杂性,提出一种双LCL变补偿参数的磁耦合谐振式无线充电系统,只需对部分补偿元件进行投切操作,即可实现恒流和恒压充电。首先利用二端口网络对系统原边、副边建模得到双LCL数学模型,分析实现恒流或恒压输出的参数配置条件;然后根据恒流和恒压参数配置特点,设计变补偿参数的电路结构;再根据仿真方法得出的关键参数与系统传输特性之间的关系,合理设计参数配置,使得磁耦合谐振式无线充电系统无复杂电路环节而且控制简单,还可实现原边电流和频率恒定;最后搭建实验平台,验证设计的系统输出的电压或电流波动较小,可以满足恒压和恒流充电的要求。  相似文献   

4.
为了减少混合谐振式无线充电系统的开关器件和无源元件数量,提高系统输出功率,同时简化原、副边的控制策略,提出一种基于LCL-LCL/S混合自切换谐振式无线充电系统,无需原、副边通信和增加任何无源元件,仅通过LCL结构的自投切操作更改拓扑网络来实现无线充电系统恒流恒压的切换。首先,依靠T型网络分析恒流或恒压输出与输入阻抗呈纯阻性的关系;然后,引入混合型补偿网络数学模型,分析实现系统输入电流和电压之间零相角(ZPA)与恒流或恒压输出特性的参数配置条件;接着,依据蓄电池充电曲线特征、谐振电流阈值、电压跳变阈值和耦合系数变化约束,进一步提出一种适用于混合谐振式拓扑网络参数优化的设计方法,在避免谐振网络参数经验选值的局限性导致参数不确定性问题的同时,也为参数选取提供了理论依据;最后,搭建实验平台验证该方案的可行性与有效性。实验结果表明,优化谐振网络参数的无线充电系统具有较好的恒流恒压输出特性,系统最大传输效率为81%,完全满足恒流恒压无线充电需求。  相似文献   

5.
无线电能传输用S/CLC补偿拓扑分析   总被引:1,自引:0,他引:1  
提出一种用于无线电能传输系统的S/CLC补偿拓扑。该补偿拓扑能够实现恒压输出、零输入相角以及零电压开关,最大输出功率也不受松耦合变压器参数的限制。从理论上分析S/CLC补偿拓扑的优点,并通过实验进行验证。考虑到松耦合变压器参数对无线电能传输系统的性能有很大影响,还仿真研究了圆形松耦合变压器的优化设计,根据优化结果制作了一个圆形松耦合变压器。该变压器的耦合系数和优化结果一致,证明了所提圆形松耦合变压器优化设计方法的正确性。  相似文献   

6.
电压源型感应耦合电能传输(ICPT)系统通常被用于电动汽车无线充电,该系统在采用串联电容补偿时,耦合系数较大会引起输出功率降低,工程实际中通常采用提高电压达到预期输出功率,但这对电源提出了更高要求且易引起过电流.为了解决这一问题,研究了串联电容补偿ICPT系统的补偿特性,得出了补偿电容值偏离谐振点后系统的工作特性,并利用非线性规划方法对电容参数进行优化,实现了在耦合系数较大确保ICPT系统输出功率的同时,使得系统效率下降幅度最小.利用一台3 kW无线充电样机验证了优化结果的有效性,结果表明当系统输出功率从1.2 kW提高至3 kW时,系统效率仅下降1.3%,且在偏移情况下利用电容切换仍能确保输出功率的同时系统效率不低于94%.  相似文献   

7.
耦合电感式无源无损缓冲电路利用耦合电感的漏感与缓冲电容,在功率管开关过程中进行谐振,实现功率管的零电流开通和零电压关断。为了尽量减小开关损耗,并保证可实现软开关的较宽占空比范围,根据功率管的损耗模型并结合缓冲电路实现软开关的条件,提出一种基于该缓冲电路谐振元件参数的优化设计方法。采用该方法设计的耦合电感式无源无损缓冲电路不受最小电压应力无源无损缓冲电路中谐振元件参数的限制,拓宽了软开关的占空比范围,提高了效率。通过一台240W的带有该缓冲电路的Buck变换器原理样机,验证了理论分析和设计的正确性。  相似文献   

8.
无线电能传输(wireless power transfer, WPT)是电力电子领域当下的热点研究方向之一。在许多应用场合,需要无线电能传输系统具备不受松耦合变压器线圈自感所限制,且与负载无关的恒定电流输出能力。文章提出一种基于S-LCL补偿的磁场感应式无线充电系统及其补偿参数的整定方法。通过对系统补偿参数的合理设置,系统能够在近似零相位角(zero phase angle, ZPA)运行下实现电流的恒定输出。通过调整补偿参数的大小,功率MOSFET能够实现零电压开关(zero-voltage switching, ZVS)。为验证理论分析的正确性,文章搭建了实验样机,其输入直流电压为50V,输出直流电流为4A,电能最大传输效率达92.8%。  相似文献   

9.
针对电动汽车应用的无线电能传输技术具有安全可靠、充电便捷等优点.对于宽输出电压范围的电路拓扑,针对其采用传统控制方法在低电压增益下效率通常较低的问题,提出了一种基于电压增益动态切换的感应式无线电能传输(IPT)系统控制方法.该方法通过动态调整一个控制周期内不同电压增益模态的占空比来控制高频逆变器输出到谐振腔的有功功率,从而实现系统在宽电压增益范围内的稳定控制,拓展负载的调节范围.由于该方法在谐振频率下工作,因此可以实现低电压增益下初级逆变器的软开关.在此首先针对变压器初级串联型补偿、次级LCL型补偿的电路拓扑进行系统建模,在此基础上对电路不同的电压增益模态进行分析,详细介绍了电压增益动态切换的控制方法,并对系统的软开关条件进行理论计算.最后搭建了1 kW无线电能传输实验平台,通过实验结果验证了在不同负载条件下的输出稳压及软开关的特性.  相似文献   

10.
以串/串补偿型无线电能传输(S/S-WPT)系统为研究对象,为了给补偿电容参数的优化选择提供一定的指导,基于变压器T模型等效电路对S/S-WPT系统进行建模分析,得到了系统实现输出恒压时补偿电容参数需满足的约束条件。在该约束条件下,进一步分析补偿电容参数对输入阻抗、输出电压增益和系统效率的影响,并得出了输入阻抗为感性的条件、输出电压增益的调节方法以及系统效率的优化途径。实验结果验证了理论分析的正确性。  相似文献   

11.
在低压大电流高距径比磁谐振式无线供电场合,由于传输线圈间的耦合系数很小,因此功率器件和谐振元件的电流很大,导致系统损耗大,难以优化设计。为此,文中提出一种三级式可扩展多模块并联无线电能传输系统架构,利用基波分析法对双模块并联系统建模并分析其传输特性。为提升系统效率,对比3种输出级结构及其控制策略并遴选出一种最优拓扑。进一步地,提出线圈级具体参数设计方法以减小电压电流应力并实现输入级软开关。最后搭建一台距径比为1(30 cm/30 cm)的1 kW原理样机验证理论分析,对比3种不同输出级拓扑的性能。实验结果表明,系统最高效率可达75.2%。  相似文献   

12.
为满足电池在无线充电过程中所需要的先恒流输出后恒压输出的充电需求,该文从电路本质特性出发,基于LCL谐振补偿网络结构,提出一种通过切换副边的谐振补偿网络参数完成恒流充电模式向恒压充电模式的自动切换方法。所提出的方法可以免去原、副边之间的无线通信,且不需要改变原边的输入电压和频率。该文以谐振补偿网络两个电感比值α=1条件下的LCL型谐振补偿结构为例,对所提出的设计方法进行了分析和验证,搭建了一套实验平台,实现了线圈距离在20cm条件下,输出功率为1k W,效率为92%,恒流输出为5V,恒压输出为205V的WPT系统。实验表明,应用所提方法,能够实现电池在无线充电的过程中先恒流输出后恒压输出的充电需求,且切换过程自动、稳定。  相似文献   

13.
针对电动汽车无线充电系统耦合系数小、充电效率偏低的问题,提出一种可提高耦合系数的磁芯设计优化方法。根据相关电路和磁路模型,给出了耦合系数与输出功率和效率的关系,推导了单圆形线圈和DD(double-D)形线圈的耦合系数的磁路表达式,为磁芯结构设计及优化提供依据。给出了一种磁芯结构的设计优化流程,并根据流程提出了单圆形线圈的车轮形优化磁芯结构和DD线圈的凹形优化磁芯结构。三维有限元仿真和实验结果表明:在同样的线圈面积下,优化的磁芯结构对耦合系数有10%~30%的提升。采用优化磁芯结构的无线充电系统,与原充电系统对比,充电效率明显提升。  相似文献   

14.
由于滞后管的非零电压开关,采用全桥逆变器的无线能量传输系统在移相控制时会存在超前管误触发的问题。针对此情况,提出了一种基于LCC补偿电路的优化方法。首先,建立了无线能量传输系统模型;然后,根据该模型对系统在移相时实现零电压开关(ZVS)的补偿电路参数条件进行了推导;最后,利用仿真以及无线能量传输系统实验平台对优化前后系统的输出功率、传输效率等参数进行了分析,并对提出的优化方法进行验证。实验结果证明该方法能够实现无线能量传输系统滞后管的ZVS,有效提高了系统在移相时的整体效率,并且不影响其输出和传输性能。  相似文献   

15.
针对双边LCC谐振式无线充电的逆变器金属氧化物半导体场效应晶体管(MOSFET)死区时间设置影响传输功率及效率的问题,提出了一种适用于其拓扑结构的死区优化设计方法。首先建立了双边LCC谐振式无线充电系统的数学描述,并简述其运行模态,推导出次级侧补偿电容与输入感性阻抗的量化规律。然后据此提出了一种死区时间优化设计方法,以实现与无线充电系统特性密切相关的逆变器软开关。最后,搭建了一套实验平台,实验结果表明,此优化设计方法可确保逆变器运行完全实现软开关,提高了无线电能传输功率及效率。  相似文献   

16.
作为连接线圈与激励源和负载的桥梁,补偿网络是磁耦合谐振式无线充电系统中非常重要的环节。本文提出一种基于双边LCC谐振补偿网路的参数设计方法,首先对双边LCC谐振拓扑进行理论分析,推导得出输出电流和等效阻抗的表达式;其次深入分析高次谐波对谐振条件的影响,得出谐振条件;然后将电容耐压与系统等效阻抗设定在一定范围内,并通过仿真逐步确定谐振拓扑补偿电容参数的范围;最后实现电动汽车无线充电系统谐振补偿网络参数的优化。  相似文献   

17.
杨阳  崔金龙  崔信 《陕西电力》2020,(8):56-62,115
针对电动汽车无线充电系统磁耦合线圈之间耦合系数小、存在偏移的问题,对磁耦合线圈的耦合系数进行了研究分析。首先根据无线充电系统串-串补偿模型,分析了耦合系数与传输功率和传输效率之间的关系。其次,比较了不同形状的线圈在相同围绕面积的条件下,耦合系数随线圈间气隙距离和偏移的变化。以圆形-圆形线圈为例分析了线圈内部参数变化对耦合系数的影响。最后,对比分析了圆形线圈增加磁芯时对耦合系数的影响。研究结果证明了所提方法的有效性。  相似文献   

18.
为了减少基于感应电能传输技术的变补偿拓扑充电系统的开关器件和无源元件数量,同时保证系统恒压充电时有相对较高的效率,该文基于串/串并补偿拓扑,在副边电路增加一个交流开关和一个附加电容,通过切换开关的关断改变副边串联补偿电容,从而实现系统的恒流恒压切换。该方法无需原副边通信及复杂的控制电路,系统结构简单,所需元件较少。在恒流模式充电阶段系统输入阻抗呈感性,能实现零电压开关;在恒压模式充电阶段输入阻抗为纯阻性,几乎没有无功功率输入。实验结果表明,所提出方法的输出恒流和输出恒压在电池等效负载变化的同时有细微的波动,但实验结果仍然满足对电池充电的要求;此外,系统恒流时最高效率为92.2%,恒压时最高效率为94.2%。  相似文献   

19.
电动汽车锂电池无线充电需要采用电磁感应耦合电能传输(ICPT)方式和恒流恒压充电模式.在电磁机构耦合系数波动或负载变化时,常规电路存在输出能力下降和输出电压、输出电流不稳定问题.基于双边LCC谐振网络,给出了一种基于开关控制并联电容(SCC)的自动谐振网络,完成了理论分析、仿真计算和实验验证,在保证高效能量传输前提下,支持负载变化时恒压或恒流输出,提高了电动汽车无线充电系统中谐振网络的灵活性与系统输出的稳定性.  相似文献   

20.
为了减少感应式无线充电系统增加的额外电路和控制成本,取消初级侧和次级侧之间的通信,该文提出仅需增加一个额外电容和一个开关器件在次级电路的方法,即可实现对电池恒流恒压切换充电。该方法无需初级和次级电路进行通信或增加DC-DC变换器,降低了整个系统的成本和复杂性。首先分析得到感应式无线充电系统的电流和电压增益,接着通过设计电路中元件参数值使得电流和电压增益与负载无关,最后合理配置电路参数,通过切换开关即可实现恒流和恒压切换输出。实验表明,所提出的方法在恒流和恒压模式下,系统的恒流充电电流和恒压充电电压略微受到电池等效负载改变的影响,但是结果仍然满足对电动自行车的充电要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号