首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双面散热(DSC)功率模块可以降低封装热阻和寄生参数,是车用电机控制器的发展趋势。然而,双面散热功率模块内的热-力交互作用机制尚不明晰,且缺少热-力协同的设计方法。为了克服热阻与应力之间的相互制约,该文提出一种多目标协同的双面散热功率模块设计方法。建立了双面散热功率模块热学和力学性能的数学模型,表征材料属性和封装尺寸对功率模块性能的影响,并利用有限元分析(FEA)方法进行验证。此外,提出双面散热功率模块的多目标优化设计模型,协同提升功率模块的热-力性能,并给出基于非占优遗传算法的求解方法。最后,基于所提出的多目标协同设计方法,对比研究了封装材料属性对优化设计结果的影响。  相似文献   

2.
袁讯  王学梅  张波 《电源学报》2016,14(6):58-66
由于温度分布不均匀以及封装中各层材料之间的热膨胀系数不同,使功率模块在工作中产生交变的热应力,造成焊层疲劳、键合线脱落等失效形式,因此研究模块的热特性尤为重要。热的测量是电力电子系统中最困难的工作之一,对封装结构进行电-热-力精确的仿真分析,能够准确了解对器件不同部位的温度、应力分布。采用基于电-热-力多物理场的有限元仿真,研究了封装材料、封装参数和封装结构对功率器件的温度、热阻、热应力这些热特性的影响,为优化封装设计,最终提高功率模块可靠性提供了一定的参考。  相似文献   

3.
双面散热(double-sided cooling,DSC)封装能大幅降低封装寄生电感和结壳热阻,提升电气装备的功率密度,是SiC功率模块的发展趋势。然而,DSC SiC功率模块的失效机理不明、寿命模型缺失,成为制约其商业化应用的关键瓶颈,亟待技术突破。传统加速老化实验方法的成本较高、耗时较长,不利于产品的快速迭代升级。针对DSC SiC功率模块的可靠性研究,文中提出一种基于有限元的分析方法,基于材料的疲劳老化模型及功率模块的失效判据,建立DSC SiC模块的寿命模型。基于大量功率模块的寿命测试结果,验证了有限元模型的可行性和有效性,相对误差小于6%。此外,详细分析SiC和Si功率模块焊层的应力和蠕变规律,建立不同封装功率模块的寿命模型。结果表明:相对于单面散热封装,DSC封装功率模块的寿命提升一倍。采用相同封装,SiC功率模块的寿命是Si功率模块寿命的30%左右。此外,还详细分析了不同封装材料对DSC SiC功率模块寿命的影响规律。为下一代DSC SiC功率模块的研发与应用,提供有益的参考。  相似文献   

4.
相对于单面散热(single-sided cooling,SSC)封装,双面散热(double-sided cooling,DSC)封装能有效降低功率模块的结–壳热阻,大幅提升变流器的功率密度,是功率集成的发展趋势。DSC功率模块具有双通道传热的特征,然而现有研究仍然沿用SSC功率模块单通道传热的热阻模型和评测方法。因此,DSC功率模块的热阻研究存在物理意义不明、热路模型缺乏、评测方法空白等基础问题,严重制约DSC功率模块的装备研发、可靠运行和规模应用,亟待技术突破。文中基于等温剖面和温度梯度的概念,揭示功率模块热阻的传热学机理,阐释DSC功率模块热阻的物理意义,建立DSC功率模块的热路模型,分析双通道传热和单通道传热的热阻规律,仿真分析和实验测试的结果,验证模型和方法的可行性和有效性。结果表明:相对于SSC功率模块,DSC功率模块的双通道热阻,从物理上、数学上和表征上,都不是两个单通道热阻的直接并联。此外,DSC功率模块在降低73%尺寸的同时,可以降低65%的结–壳热阻。这些研究发现将为DSC功率模块的研发与应用及制定多通道传热半导体器件的热阻标准,提供有益的参考。  相似文献   

5.
不同封装技术对功率半导体模块的电气性能、散热性能和可靠性有不同的影响。分析了模块寄生电感对绝缘栅双极型晶体管(IGBT)开关特性和开关损耗的影响,结合优化的门极开通和关断电阻,将模块的寄生电感从20 nH降低至10 nH可以使IGBT的开关损耗减小20%~30%。通过热阻的方法分析了IGBT模块散热系统中不同材料对IGBT散热的影响,其中导热硅脂和模块陶瓷衬底对模块的散热影响较大,从导热介质、衬底材料、芯片大小和间距及基板结构方面阐述了优化模块散热性能的方法。不同材料的热膨胀系数不匹配是导致模块老化失效的主要原因,阐述了绑定线连接、焊接层疲劳的机理和现象,介绍了提高模块封装可靠性和寿命的一些新材料和新工艺。  相似文献   

6.
由于开关速度非常快,多芯片并联碳化硅(silicon carbide,SiC)功率模块的电压、电流振荡问题比硅(silicon,Si)器件更加突出,对寄生参数的要求也更高。然而,现有的商业化大功率SiC模块采用多芯片并联模式,大多沿用Si器件的封装技术,寄生参数不仅偏大,且存在明显的不对称性,不能充分发挥SiC器件的优越性能,亟需新的封装结构,以改善模块内的电热应力分布。首先,针对直接覆铜板(direct bonded copper,DBC)寄生电感的计算,提出两种简化计算方法,并将计算结果与有限元进行对比,基于这两种方法进行新型DBC布局的辅助设计,针对几种不同的三芯片并联功率模块,对比研究DBC布局对寄生参数分布、电流分布特性的影响,揭示寄生参数对多芯片并联模块电流分布的影响机理。最后,提出一种物理对称的新型功率模块封装结构,以实现各芯片间的电流均衡。对比分析表明,所提出的新型DBC布局能够显著减小回路之间的寄生参数差异,提升了SiC芯片间的电流分布一致性,有利于提升并联芯片额定电流的使用率,改善模块电–热应力的均衡性。  相似文献   

7.
针对高压SiC模块的封装关键问题(即绝缘性能、寄生参数、热管理),该文提出多目标加权优化方法,实现6.5kV SiC MOSFET模块多个性能指标的折中和优化。首先,通过建立电、热、力多物理场有限元模型分别对量化指标寄生电容、焊料层热应力以及电场强度进行建模,并对三者进行加权优化,得到最优尺寸参数以保证6.5kV SiC MOSFET模块的整体性能;然后,通过对外壳和端子的设计,保证模块外部绝缘可靠的同时尽可能降低寄生电感,实现模块寄生电感和外部绝缘性能的折中;最后,通过双脉冲实验、耐压测试等验证所研制模块的性能优势及多目标加权优化方法的有效性。结果表明,所提研制模块能够在4 500V/14A的条件下可靠工作;在寄生参数、绝缘性能得到优化的同时,保证了模块整体性能的优越性。  相似文献   

8.
SiC风冷逆变器省却了复杂的液冷系统,使电动汽车的动力系统更加紧凑。然而,风冷SiC逆变器缺乏系统的设计方法和关键的封装集成路径。提出一种风冷SiC逆变器的分层协同设计方法,包括功率模块、母线电容和散热器3个层次。在功率模块层,采用电-热-力多物理场分析方法,建立SiC功率模块的多维应力模型,提出一种改进的功率模块封装方法。在母线电容层,建立电容容值和纹波电流之间的数学模型,计及纹波电压、纹波电流和成本之间的相互制约,提出母线电容材料选择和电容值最小化的优化方法。在散热器层,采用电-热协同仿真方法,建立风冷散热器的热阻模型,对散热器的结构和材料进行优化设计。在分层优化设计的基础上,研制SiC功率模块和风冷SiC逆变器样机,实验结果验证了所提设计方法和封装集成的可行性。所作研究为SiC逆变器的研究提供了新的研究方向。  相似文献   

9.
多芯片组件基板的热效应分析   总被引:2,自引:0,他引:2  
针对大功率多芯片模块,建立了简化传热模型,利用有限元数值方法,对其热阻和温度场进行了稳态和瞬态分析.模拟结果表明:模块的散热方式以热传导为主.由芯片到外壳底面的热通路为主要散热途径,采用导热性能好的基板是非常有效的散热方案:绝缘层热阻占整个基板热阻的65%;模块设计时要尽量减小功率互连引线的寄生电感和电阻.合理安排功率管芯位置,要求布线尽量短而宽.多个功率芯片要尽量均匀分布于基板上,以此降低结温,避免热集中现象.  相似文献   

10.
随着SiC器件在新能源发电、电动汽车等领域的快速发展,对定制化、高可靠SiC功率模块的需求日益迫切。然而,现有SiC功率模块大多沿用Si模块的封装技术,存在寄生电感大等问题,无法适应SiC器件的高速开关能力,难以充分发挥SiC器件的优越性能。该文梳理了功率模块的材料选型准则,以及封装工艺方法,给出了自主封装功率模块的测试流程。针对全Si、混合、全SiC功率模块,基于相同的封装技术和测试方法,对比研究了3种功率模块的动态性能和温敏特性,为不同应用需求下的器件选型提供参考。针对全SiC半桥功率模块,提出了开关损耗的数学模型,并利用实验结果验证了其有效性。此外,结合功率模块的大量故障案例建立了数学模型,分析封装失效的机理,为下一代SiC功率模块的封装集成研究提供了有益的经验和思路。  相似文献   

11.
在使用IGBT等功率器件模块的电能变换装置中,通常需要利用热阻网络来预测功率器件的温度或者构建电能变换装置的电热仿真模型来进行动态电热联合仿真。多功率器件工作时,各个热源互相影响,需要考虑热耦合效应。基于线性叠加原理,建立了多功率器件模块热耦合效应下外热阻的热阻矩阵表示方法和外热阻网络模型,并采用有限元热模拟方法进行了仿真。根据仿真结果对热阻矩阵进行了计算。  相似文献   

12.
相较于单个硅绝缘栅双极型晶体管(Si IGBT)芯片,碳化硅(SiC)芯片的载流量较小,因此对于同功率等级的功率模块,需要并联更多的芯片。然而,芯片数量的增多会增大模块失效的风险,因此需要一种低寄生电感低结温的封装设计,来提高多芯片并联SiC模块的可靠性。这里通过对多芯片布局以及垫片位置分布的研究,设计出一款低寄生电感,低结温的多芯片并联功率模块结构。最终基于实验和多物理场仿真软件COMSOL对该封装结构进行验证,实验及仿真结果表明所设计的多芯片并联SiC模块满足低感、低结温的设计目标。  相似文献   

13.
功率半导体模块通常采用减小结壳热阻的方式来降低工作结温,集成Pin-Fin基板代替平板基板是一种有效的选择。两种封装结构的热阻抗特性不同,可能对其失效机理及应用寿命产生影响。针对平板基板和集成Pin-Fin基板两种常见车规级IGBT模块进行了相同热力测试条件(结温差100 K,最高结温150℃)下的功率循环试验,结果表明,散热更强的Pin-Fin模块功率循环寿命低于平板模块。失效分析显示,两者失效模式均为键合线脱附,但Pin-Fin模块的键合失效点集中在芯片中心区域,而平板模块的键合失效点则较为分散。基于电-热-力耦合分析方法,建立功率循环试验的有限元仿真模型,结果表明,Pin-Fin模块的芯片温变梯度更大,芯片中心区域键合点温度更高,使芯片中心区域的键合点塑性变形更大,导致其寿命较平板模块更短,与试验结果吻合。  相似文献   

14.
SKiN技术是使用烧结层替代焊接的新技术,通过无绑定线封装技术平台增强了可靠性、减小了热阻、并改进了内部寄生电感。本文介绍了采用该技术设计的功率模块的性能特点,并进行了样机测试。  相似文献   

15.
针对绝缘栅双极型晶体管(IGBT)模块封装杂散参数影响内部多芯片并联电流和损耗分布的问题,提出计及杂散电感影响的IGBT模块内部开关损耗计算方法。首先,基于功率模块内部封装结构建立了计及封装杂散电感影响的IGBT等效电路模型,理论推导和分析封装杂散电感对IGBT动态特性的影响。其次,基于开通折线模型中并联芯片间电流变化率与损耗分布对应关系,理论推导了杂散电感分布参数与各支路开通损耗所占比例之间的函数关系,提出计及杂散电感影响的IGBT模块内部开关损耗计算方法。最后,仿真并实验验证了开通过程中IGBT模块内部电流分布规律,测得在不同负载条件下IGBT模块下桥臂各支路损耗并与理论计算结果进行了比较,验证了所提损耗计算方法的有效性。结果表明,IGBT模块下桥臂各并联芯片开通过程中存在明显不均流现象,导致损耗分布存在差异。  相似文献   

16.
针对现有商用SiC功率模块寄生电感大这一问题,提出一种基于直接覆铜陶瓷基板(DBC)+柔性印刷电路板(FPC)的新型混合封装结构,并设计了一种基于该结构的高速低感SiC半桥功率模块。利用DBC+FPC的多层结构,通过优化布局,形成了互感抵消回路,同时利用FPC薄的特点来增强互感抵消作用,使得主回路的寄生电感降至2.5 nH左右。设计并加工了一个1200 V,40 A的全SiC半桥功率模块,通过阻抗测试和双脉冲测试,验证了模块的低寄生电感特点及高速开关的性能。  相似文献   

17.
张永锋  曾翔君  余小玲  杨旭 《电气传动》2004,34(Z1):170-173
分析了混合封装的电力电子集成模块的热路模型,并且仿真得出了结壳热阻Rth-jc的s数值仿真结果.讨论了DBC大小,铜基板大小、形状与结壳热阻的关系,为功率模块的结构设计提供了参考.  相似文献   

18.
碳化硅作为宽禁带半导体的代表,理论上具有极其优异的性能,有望在大功率电力电子变换器中替换传统硅IGBT,进而大幅提升变换器的效率以及功率密度等性能。但是目前商用碳化硅功率模块仍然沿用传统硅IGBT模块的封装技术,且面临着高频寄生参数大、散热能力不足、耐温低、绝缘强度不足等问题,限制了碳化硅半导体优良性能的发挥。为了解决上述问题,充分发挥碳化硅芯片潜在的巨大优势,近年来出现了许多针对碳化硅功率模块的新型封装技术和方案,重点关注碳化硅功率模块封装中面临的电、热以及绝缘方面的挑战。该文从优化设计方法所依据的基本原理出发,对各种优化技术进行分类总结,涵盖了降低高频寄生电感、增强散热性能、提高耐高温能力以及提升绝缘强度的一系列相关技术。在此基础上,对相关的可靠性问题进行总结。最后基于碳化硅功率模块封装技术的现状,对相关技术的未来发展进行了展望。  相似文献   

19.
碳化硅(silicon carbide,SiC)功率器件作为一种宽禁带器件,具有耐高压、高温,导通电阻低,开关速度快等优点。如何充分发挥碳化硅器件的这些优势性能则给封装技术带来了新的挑战:传统封装杂散电感参数较大,难以匹配器件的快速开关特性;器件高温工作时,封装可靠性降低;以及模块的多功能集成封装与高功率密度需求等。针对上述挑战,论文分析传统封装结构中杂散电感参数大的根本原因,并对国内外的现有低寄生电感封装方式进行分类对比;罗列比较现有提高封装高温可靠性的材料和制作工艺,如芯片连接材料与技术;最后,讨论现有多功能集成封装方法,介绍多种先进散热方法。在前面综述的基础上,结合电力电子的发展趋势,对SiC器件封装技术进行归纳和展望。  相似文献   

20.
作为大功率变流器的关键单元,绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)的高可靠性是系统稳定运行的重要保证,准确的寿命评估是提高系统可靠性的有效手段之一。然而,目前器件寿命评估多忽略焊料层疲劳造成的热阻、热载荷增大效应,易高估器件寿命。针对该问题,该文提出计及焊料层疲劳累积效应的IGBT模块寿命评估模型,该模型考虑焊料层失效位置信息以及疲劳造成的热特性反馈效应。首先,基于IGBT模块三维电–热–力多物理场耦合模型分析不同焊料层疲劳对模块热响应影响的差异;其次,提出基于Cauer模型的考虑焊料层疲劳位置信息的热网络更新策略;然后,基于该策略建立适时更新热网络的计及焊料层疲劳对模块老化加速作用的寿命预测模型;最后,与现有寿命预测模型对比分析实际风速下风机变流器中IGBT模块的寿命评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号