首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于混合型模块化多电平变换器的柔性直流输电系统可通过主动控制来限制直流故障电流,即将在昆柳龙三端混合直流输电工程中应用。然而,关于混合型MMC的主动限流开断原理、故障电流演变特性、限流控制效果与影响因素尚缺少相关理论研究。针对上述问题,该文首先分析采用直流电压前馈的主动限流控制策略限流机理,研究计及延时后,换流器直流电压、电流在故障期间的演变特性。提出换流器与直流断路器协调控制策略,并分析采用不同协调控制策略时故障线路电流的动态演变过程。分析采用主动限流控制策略后的柔性直流电网对DCCB的开断电流大小需求。针对基于半桥MMC构建的直流电网和基于混合型MMC构建的直流电网2种技术方案,在DCCB开断电流需求、DCCB经济性以及直流电网故障特征等方面对二者进行对比分析。研究表明,与半桥MMC型直流电网相比,基于混合型MMC的直流电网在使用主动限流控制技术后,DCCB开断电流大小减小为原来的22%,使得DCCB的成本减小为原来的45%,故障后换流站直流功率最短时间恢复时间减小为原来的30%,故障后功率模块电容过电压减小为原来的33.3%。最后,通过仿真验证理论分析的合理性。  相似文献   

2.
提出了采用混合型模块化多电平换流器(hybrid modular multilevel converter,hybrid MMC)和直流开关构建柔性直流电网进行架空线远距离电能传输的方案。针对由全桥型子模块和半桥型子模块组成的混合型MMC,分析了其拓扑结构、基本运行原理和直流电压运行区间,提出了混合型MMC的三自由度控制架构,并详细分析了直流故障穿越控制策略,进而设计了混合型MMC构成的柔性直流电网的故障清除策略和多次重启动时序。故障期间,混合型MMC无须闭锁IGBT,可控制故障电流至0,从而保持不间断运行、持续向交流系统提供无功支撑。3次重启动失败后,架空柔性直流电网配置的直流开关在零故障电流下开断以隔离故障电流通道,直流电网重启,线路潮流发生转移。最后在PSCAD/EM TDC仿真平台验证了所提出的故障清除策略及重启动时序的可行性。  相似文献   

3.
柔性直流电网是进行大规模新能源远距离架空线传输的重要技术手段。但架空线比直流电缆更容易发生瞬时性短路故障,待故障消失后需迅速重合闸。若直流电网发生永久性故障,常规基于换流器主动信号注入的故障性质判别方法易对直流电网的稳定运行产生较大干扰。针对上述问题,提出一种基于混合型模块化多电平换流器(MMC)主动信号注入的柔性直流电网改进型自适应重合闸方法,在混合型MMC极控制器中附加主动信号控制,使柔性直流电网在不中断功率传输的前提下实现故障性质辨识。此方法具备较强的耐过渡电阻能力,且不影响柔性直流电网功率传输的稳定性。在PSCAD/EMTDC搭建了混合型MMC四端柔性直流电网的电磁暂态模型,通过仿真验证了该方法在配备混合型MMC和机械式直流断路器的柔性直流电网中的有效性。  相似文献   

4.
采用架空线的柔性直流电网在大规模风电、光伏等新能源的汇集、输送和并网中有很好的应用前景。由于直流故障电流上升速度快、峰值高,柔直工程中一般采用高速大容量直流断路器隔离直流故障。然而,直流断路器制造难度大、成本高,降低了直流电网的经济性,并且其可行性还有待实际工程验证,这在一定程度上阻碍了直流电网的大规模发展与建设。为此,本文提出了一种基于混合型MMC和快速真空开关的直流电网组网方案。该方案充分利用混合型MMC强大的控制能力,可以保证换流器在直流故障期间不闭锁,使得直流电网在直流故障被清除后可以快速、柔性地切换到新的运行状态,缩短直流电网功率中断时间,提高直流电网的利用率。同时可以在直流线路中安装快速真空开关来替代高速大容量直流断路器,以减小直流电网的建设成本,大幅度提高直流电网的经济性。最后,基于PSCAD/EM TDC平台仿真验证了本方案的正确性与合理性。  相似文献   

5.
针对架空线柔性直流电网线路故障,提出了基于混合型MMC的主动限流控制方法,从而降低对直流断路器开断速度、开断容量以及吸收能量的要求,减少直流电网建设成本、提高直流电网可利用率。该文首先研究了换流器的交/直流电压解耦可控性,给出了主动限流控制器的控制架构。为了解决直流故障穿越期间,桥臂电容电压可能会短时越限的问题,提出了在内环直流电流控制器附加直流电流指令动态限幅控制器的方案。提出了主动限流控制策略的一种优化手段—电流目标预设控制,分析了不同控制器延时对主动限流控制的影响。计及主动限流控制,研究了单换流器系统和直流电网故障前后直流故障电流演变机理。最后,分别在单换流器系统和直流电网系统中仿真验证了前文理论分析的正确性的有效性。  相似文献   

6.
随着模块化多电平换流器(modularmultilevel converters,MMC)在架空线直流输电和柔性直流电网中的广泛应用,直流线路故障清除问题越来越突出,如何实现直流线路故障的快速清除成为制约MMC柔性直流电网发展的关键问题之一。作为直接有效的解决方案,混合高压直流断路器(direct current circuit breaker,DCCB)还不够成熟,高速大开断容量DCCB的研制仍有困难。文中通过挖掘和利用MMC控制的灵活性,提出一种适用于架空线半桥型MMC柔性直流电网的源网配合自适应故障清除方案。在直流故障期间,该方案利用MMC调压控制策略减少源侧子模块投入数量,降低换流器桥臂单元输出电压,并与网侧断路器预充电电容电压自适应配合,使MMC桥臂单元输出电压小于预充电电容电压,利用电压差使故障电流迅速下降至零,达到切断故障电流并清除故障的目的。首先介绍所提故障清除方案中源侧MMC调压控制原理和网侧断路器拓扑结构,然后分析该方案的工作原理,并推导该方案下半桥型MMC的直流故障电流计算方程,给出调压控制器控制系数和网侧断路器元件参数设计方法,最后在PSCAD/EMTDC电磁暂态仿真平台上搭建基于半桥型MMC的四端柔性直流电网模型,对所提故障清除方案的有效性进行仿真验证。  相似文献   

7.
柔性直流电网直流故障短路电流具有上升速度快、峰值高等特点。当前,尚不成熟的故障电流抑制技术在一定程度上阻碍了柔性直流电网的大规模建设和发展。已有学者通过在直流电网中增加直流限流器或改进换流器拓扑的方式来抑制直流故障电流。然而上述技术方案会增加直流电网的建设成本。该文通过充分挖掘半桥型模块化多电平变换器(modular multilevel converter,MMC)的控制潜力,提出一种适用于半桥型MMC的自适应限流控制策略。该控制策略通过在直流故障期间快速改变投入的子模块数量,从而快速降低换流器直流电压达到抑制故障电流的目的。首先介绍限流控制的基本原理以及控制器结构,分析并推导半桥型MMC的直流故障电流和桥臂故障电流的计算方程,进一步仿真验证限流控制作用下故障电流的计算方程,最后在基于半桥型MMC的四端柔性直流电网中对限流控制策略的有效性进行仿真验证。仿真结果表明:限流控制使得直流断路器((DC circuit breaker,DCCB)的开断电流减小4.92k A(46.95%),耗散能量减小26.1MJ(67.93%),并且减小故障期间桥臂电流的峰值,降低了换流器过流闭锁的风险。  相似文献   

8.
MMC的直流短路故障保护直接关系到其在柔性直流输电和直流电网领域的应用。提出一种无需任何附加保护功率器件的具备直流故障清除能力的三电平子模块拓扑。该拓扑利用子模块电容电压来关断续流二极管,从而快速地清除直流短路电流。最后通过PSCAD/EMTDC仿真验证了该子模块拓扑的直流故障保护能力。  相似文献   

9.
基于模块化多电平换流器(MMC)柔性直流电网是实现大规模可再生能源发电汇集、多能互补和友好型并网的有效手段。针对直流断路器大电流开断成本高和技术难度大的问题,提出了一种适用于大规模风电接入的柔性直流电网故障电流协同抑制方法。通过分析直流故障特性,揭示了故障电流的关键影响因素,在此基础上,提出了MMC主动限流控制方法,并针对网侧和风电场侧换流站分别设计了参数选取原则,其中网侧换流站的限流性能可自适应于直流母线电压,在抑制故障电流的同时兼顾直流电网的快速恢复。针对风电场侧换流站,提出了集成限流功能的耗散电阻配置方法,使其同时具备解决直流电网功率盈余问题和降低桥臂换流阀电流应力的能力,并提出了其与主动限流控制以及直流断路器的协调配合方法,在保证风电场安全运行的同时协同抑制故障电流,从而降低对直流断路器开断速度、容量及其制造成本的需求。最后,基于RTLAB OP5600实时数字仿真平台搭建了四端柔性直流电网仿真模型,验证了所提方法的有效性和可行性。  相似文献   

10.
一种MMC-HVDC的直流电压波动抑制新方法   总被引:5,自引:0,他引:5  
针对柔性直流输电系统常规直流电压波动抑制算法中存在的缺陷,提出一种适用于模块化多电平换流器型高压直流输电系统(modular multilevel converter based high voltage direct current,MMC-HVDC)的直流电压波动抑制方法。该方法利用MMC特有的“储能”特性,在交流系统不对称时,控制 MMC 交、直流侧瞬时有功功率不再平衡,从而实现MMC交流侧电流依然保持对称运行,同时直流侧电压、电流和功率保持为恒定。为了实现上述控制功能与目标,建立三相交流系统不对称时 MMC 直流回路的模型,设计αβ0坐标系下以比例谐振调节器为基础的控制策略,且探讨MMC-HVDC中的协调控制问题。最后,搭建71电平背靠背 MMC-HVDC 系统模型进行数字仿真,结果验证了所提控制方法的有效性。  相似文献   

11.
模块化多电平换流器(modular multilevel converter, MMC)直流侧故障后短路电路急剧上升,严重影响直流电网安全。为限制故障电流,提出一种基于子模块两级主动控制的直流短路限流控制方法(submoduletwo-stage active control,STAC),通过两段故障检测判据和预设最大短路电流,构造关于直流电流的分段函数K,其输出决定减投子模比例,故障后降低直流电压抑制短路电流,同时设计适应于不同运行条件换流站MMC的控制参数,并且仅通过控制动作限流不产生额外成本。STAC不影响系统正常运行,限流过程维持功率传输。最后在四端直流电网中对STAC限流效果及其性能进行仿真分析。结果表明,所提限流方法能有效抑制故障电流,流经直流断路器故障电流降低49.7%,桥臂电流峰值降低23.15%,故障后100 ms恢复直流电压。  相似文献   

12.
柔性直流架空线路故障自清除技术,采用具有直流侧故障清除能力的混合型模块化多电平换流器(MMC)拓扑及故障电流清除策略,实现直流架空线路不同类型故障的快速清除和高速再启动,无需配置直流断路器等外部设备。该技术首次应用于昆柳龙直流工程。工程送端云南昆北站采用常规电网换相换流器(LCC)特高压换流阀;受端广西柳州站和广东龙门站均采用全桥、半桥功率模块混合型MMC特高压换流阀,  相似文献   

13.
基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流电网技术是未来电力系统输电技术的发展方向之一,但面临快速清除直流侧故障的巨大挑战。分析比较3种隔离直流侧故障的方法,选择混合式直流断路器作为隔离直流侧故障的方案。结合基于差动电流的直流故障检测技术,提出考虑线路分布电容的柔性直流电网保护方案,包括线路保护和母线保护,并论述保护参数的选取原则。在PSCAD/EMTDC仿真平台上建立一个4端柔性直流电网模型,验证所提基于混合式直流断路器的差动保护方案的有效性和可行性。结果表明,所提的差动保护方案满足了保护的选择性和速动性要求,运用混合式直流断路器可在数ms内清除柔性直流电网的直流侧故障。  相似文献   

14.
多端柔性直流电网保护关键技术   总被引:7,自引:15,他引:7  
多端柔性直流电网直流故障后故障电流快速上升、无自然过零点等特点使得直流线路保护和故障处理技术成为柔性直流电网发展的关键技术难点。理论分析了多端柔性直流电网线路保护的特殊性,借鉴传统直流输电线路保护原理和点对点式柔性直流输电线路保护原理的研究现状,对多端柔性直流电网线路保护的发展方向进行了探讨。同时,全面分析了各类直流故障隔离方法的基本原理,从故障隔离能力、经济性、控制保护耦合影响等多个方面阐述了其进一步的发展趋势。最后,考虑到架空线路输电的应用前景,设计提出了一种适用于点对点式柔性直流输电系统、具有低电流危害的新型故障重合闸判断方法,较现有重合闸策略而言,该方法重合于永久性故障时能够彻底避免对系统的二次过电流冲击。在此基础上,讨论了多端柔性直流电网对重合闸策略的性能要求。  相似文献   

15.
在柔性直流输电系统受扰后,当直流电网存在盈余不平衡功率时,将导致直流过电压问题,进而对IGBT、电容器等器件造成不可逆的损坏。针对直流电网故障下的直流过电压问题,首先分析了不平衡功率导致直流过电压的机理,得到了直流电压与直流电网内不平衡功率的定量关系;然后提出一种抑制直流电压上升的虚拟调制控制策略,并针对单极和双极2种故障类型采取2种不同控制策略;最后,基于PSCAD/EMTDC搭建了四端柔性直流电网仿真模型,验证发生受端短路故障、受端单站闭锁故障和受端单极闭锁故障3种典型故障时所提控制策略的有效性。仿真结果表明,虚拟调制控制策略能有效地延缓直流电压上升速度,与耗能装置配合可以显著降低耗能装置的投入容量。  相似文献   

16.
正柔性直流架空线路故障自清除技术,采用具有直流侧故障清除能力的混合型模块化多电平换流器(MMC)拓扑及故障电流清除策略,实现直流架空线路不同类型故障的快速清除和高速再启动,无需配置直流断路器等外部设备。该技术首次应用于昆柳龙直流工程。工程送端云南昆北站采用常规电网换相换流器(LCC)特高压换流阀;受端广西柳州站和广东龙门站均采用全桥、半桥功率模块混合型MMC特高压换流阀,  相似文献   

17.
为解决基于MMC的直流电网短路电流问题,对半桥型MMC换流器以及具备直流故障自清除能力换流器的直流故障电流进行理论分析,并给出了短路电流计算方法。在此基础上对直流电网拓扑结构进行分类,给出直流电网中短路电流的计算方法。最后针对不同换流器和电网拓扑结构,给出了系统故障检测及故障保护方法。通过系统仿真验证了上述理论分析及短路电流计算结果的可靠性。  相似文献   

18.
本文研究了受端级联型混合直流输电系统的控制特性,分析了受端柔性直流在下垂控制模式下对级联型混合直流控制特性的影响,明确了混合级联直流的总体UI特性曲线。相比于主从控制,采用下垂控制的MMC具有同时控制直流电压和直流功率的能力,不会出现功率反送现象。但在下垂控制作用下,MMC无法实现直流电压的准确控制。因此,本文提出一种受端级联型混合直流输电系统的自适应下垂控制策略,该策略可根据系统直流电流的变化,实时调节下垂特性,避免MMC的直流电压随直流电流的变化而产生波动。最后,基于PSCAD/EMTDC的仿真结果验证了所提控制策略的有效性,该策略可实时自适应调节下垂特性,实现直流电压的准确控制,提高了混合直流输电系统的稳定性。  相似文献   

19.
由于基于半桥模块化多电平换流器(half bridge modular multilevel converter,HB-MMC)的柔性直流电网系统控制方式和自身拓扑结构的特殊性,直流侧发生短路故障时,其故障电流具有上升速度快、峰值高的特点,极易损坏换流站中的半导体器件。又由于直流故障电流没有自然过零点,直流断路器难以将故障切除,因此,直流输电线路的短路故障对保护系统提出了更高的要求。基于柔性直流电网的拓扑结构、直流侧故障特征,从直流故障电流的限制、直流输电线路保护原理等方面,系统地介绍了国内外基于HB-MMC直流电网的直流输电线路故障处理与保护技术的研究现状,重点分析了柔性直流电网直流线路的保护原理,探讨了目前柔性直流电网故障处理和保护技术面临的关键问题及未来进一步的研究方向。  相似文献   

20.
针对半桥子模块(HBSM)、全桥子模块(FBSM)及箝位双子模块(CDSM)这3种子模块混合级联模块化多电平换流器(MMC),首先研究了混合型MMC的直流故障机理,此处提出了混合型MMC具备直流故障穿越的约束条件。然后,基于直流电压为±1 200 V、额定容量为20 kVA的21电平混合型MMC系统试验样机,对混合型MMC系统直流故障穿越特性进行研究。试验结果表明,直流故障发生后,混合型MMC系统通过闭锁换流器以阻断短路故障电流,在直流短路故障期间,交流断路器无跳间,且直流短路故障清除后,换流器在10 ms内重新解锁并恢复至稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号