首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与燃煤电站锅炉相比,超临界二氧化碳锅炉炉膛管内工质参数更高,对壁面冷却能力更差,因而其结构设计面临着巨大挑战。本文以某5 MW 超临界二氧化碳试验锅炉布置方案为例,对锅炉气冷壁建立回路流量和压差方程组,采用拟牛顿法求解并联管路流量和气温,并根据热负荷求解壁面金属温度。计算结果表明,炉膛气冷壁各回路流量相对偏差小于7%,金属壁温均在材料强度允许范围内,锅炉设计方案安全可靠。该研究成果对后续的产品改进优化及大型化具有一定意义。  相似文献   

2.
基于300MW一次再热分流再压缩超临界二氧化碳(S-CO_2)布雷顿循环,优化锅炉受热面布置方式,为解决工质压降大和炉膛管壁温度高问题,对S-CO_2锅炉炉膛进行结构设计优化,提出S-CO_2锅炉炉膛可采用单炉膛双切圆、垂直管屏的结构布置方式。建立系统性能分析模型并计算了膛侧工质压降和管壁温度并与原始方案进行了比较。结果表明:设计负荷下,优化方案过热气冷壁压降和再热气冷壁压降明显降低。优化后因工质压力损失的减小,从而使系统的发电效率上升、发电标准煤耗降低,在设计负荷下,系统标准发电煤耗减少2.8g/(kW×h)。沿炉膛高度方向,优化方案气冷壁的管外壁最高温度显著低于原始方案,优化方案有更宽的安全裕度,从而保证机组的安全运行。  相似文献   

3.
相对于常规电站锅炉,高参数超超临界二次再热机组锅炉具有炉内热负荷分布复杂、水冷壁工质温度水平较高、工质大比热容区吸热能力下降等特点,这对锅炉水动力的设计提出了更高的要求。对此,本文以华能安源发电有限责任公司超超临界660 MW二次再热机组锅炉为例,通过数值模拟和水动力建模计算相结合的方法,对超超临界二次再热机组锅炉垂直管圈水冷壁的水动力特性进行了详细计算和分析,获得了相应的流量分配规律以及汽温和壁温分布特点。结果显示:BMCR工况下,下炉膛和上炉膛水冷壁均存在流量偏差和壁温偏差,整体呈负流量响应特性;每面墙水冷壁内流量呈两端高、中间低分布;汽温和壁温分布则为中间高、两端低。本文研究成果可以为高参数超超临界二次再热机组锅炉垂直管圈水冷壁的水动力设计和优化提供参考。  相似文献   

4.
超临界及超超临界锅炉水冷壁壁温偏差研究   总被引:1,自引:2,他引:1  
樊泉桂 《中国电力》2006,39(5):59-63
根据国内超临界锅炉的实际运行数据和超超临界锅炉的设计数据,研究了影响其水冷壁壁温偏差的主要因素。重点研究了水冷壁受热偏差、质量流率、工质焓增、变压运行、工质热物理特性等对于螺旋管圈水冷壁和垂直管屏水冷壁壁温偏差的影响关系;分析了控制超超临界锅炉水冷壁壁温偏差的技术措施:采用内螺纹管,降低水冷壁管外烟气侧热负荷和热偏差,适度控制质量流率的裕量,合理控制下辐射区和上辐射区水冷壁的工质焓增,采用节流圈调节流量偏差和利用垂直管屏在低质量流率下的正流量补偿特性等措施,可有效控制超临界和超超临界锅炉水冷壁的壁温偏差。  相似文献   

5.
针对西安热工研究院有限公司(西安热工院)5 MW级超临界二氧化碳(S-CO2)锅炉启动过程中气冷壁堵塞问题,结合现场情况开展了原因分析。发现机组充气过程中工质多次发生节流膨胀,制冷降温效果显著,气冷壁底部集箱内存水结冰;CO2温度降低而压力逐步提高,发生液化并封闭了集箱;锅炉点火后,液化的CO2与结冰的水分封闭了通流孔,阻断了工质流动,致使气冷壁无法得到有效冷却,锅炉金属壁温蹿升剧烈。对此,现场实施了小火暖炉、降压闪蒸、末端排水及优化工质充装参数等改进措施,取得了良好效果。经调试调整后,锅炉点火启动正常,金属壁温升速合理,相关经验可供后续同类机组参考。  相似文献   

6.
水动力特性及流动不稳定性的准确计算和分析,对660MW超超临界CFB锅炉水冷壁的优化设计和安全运行具有重要意义。针对我国自主开发的660 MW超超临界CFB锅炉设计方案,将其水冷壁系统等效为由流量回路、压力节点和连接管组成的流动网络系统,根据质量守恒、能量守恒和动量守恒方程建立了水动力计算数学模型,在此基础上对其4个负荷下的水动力特性进行了计算分析。同时建立了适用于超超临界锅炉流动不稳定性计算分析的一维单通道通用数值计算模型,选取25%锅炉最大连续出力(boiler maximum continue rate,BMCR)负荷下的危险回路进行了流动不稳定性的计算分析。计算结果表明,超超临界CFB锅炉水冷壁系统的总压降低于煤粉炉的压降;水冷壁流量分配呈正响应特性,4个负荷下最大的流量偏差为20.98%;最大的出口工质温度偏差出现在后墙,为8.4℃;各负荷下的壁温均处于管子材料的允许温度范围之内,不会出现高温爆管的现象;水冷壁不会发生流动不稳定性,锅炉的运行是安全可靠的。  相似文献   

7.
为解决压降效率惩罚问题,大容量超临界二氧化碳(supercritical CO2,sCO2)锅炉需采用模块化设计。由于sCO2锅炉入口工质温度高、管内换热系数低,炉膛冷却壁极易超温,冷却壁安全性为锅炉设计的关键难点。锅炉中,烟气侧热负荷分布与sCO2侧参数与管排结构具有各自的分布特点。对烟气侧与sCO2侧进行适当的匹配可有效降低冷却壁壁温。该文以1000MW等级二次再热sCO2锅炉为例,建立耦合热力学循环与锅炉模块流动传热的数值模型,分析不同布置方案下冷却壁壁温,提出降低大容量sCO2锅炉冷却壁壁温的烟气侧与sCO2侧匹配策略。结果表明,在烟气全温区范围内,遵循低温工质匹配高热负荷原则,冷却壁分成6个模块的方案可有效降低冷却壁壁温;在炉膛内,遵循高许用热负荷匹配高热负荷原则,调整冷却壁模块的布置,可进一步降低冷却壁壁温。该文提出的匹配策略显著降低了冷却壁壁温,可为模块化锅炉的设计与布置提供一定参考。  相似文献   

8.
在太阳能热利用领域,以二氧化碳为工质的动力循环主要有跨临界朗肯循环和超临界布雷顿循环。在太阳能集热器温度为200~1000℃和二氧化碳工质压力在10~40 MPa的范围内,采用MATLAB软件编程,计算和比较这两种循环的热效率。在较高温度下,随工质压力升高,两种循环热效率均增大;但在较低温度下,两种循环热效率的变化却相反;并且在一定温度以上,超临界布雷顿循环热效率总是高于跨临界朗肯循环。通过拟合得到两种循环热效率相等的关联式。结合实际条件,太阳能集热器温度为350℃以上时应采用超临界布雷顿循环;而在350℃以下,宜采用跨临界朗肯循环。  相似文献   

9.
针对超临界二氧化碳主压缩机间冷再热再压缩布雷顿循环燃煤发电系统,建立了相关的热力学模型。通过详细的模拟仿真,研究高压透平入口压力、高压透平入口温度、主压缩机入口温度以及压力损失等关键参数对循环最佳热效率的影响。通过分析发现,提升高压透平入口压力和高压透平入口温度、降低主压缩机入口温度都有利于循环热效率的提升,压力损失的增加会导致循环效率降低。最后,将超临界二氧化碳循环燃煤机组的性能与实际运行的蒸汽循环燃煤发电机组的性能进行了比较。研究结果表明,SCO_2循环机组可以通过改进循环参数取得与水蒸汽循环相当或者更低的供电煤耗;但是在供电功率相同的情况下,SCO_2循环机组工质在锅炉里面的体积流量更大。  相似文献   

10.
超超临界二次再热锅炉运行参数高,其水冷壁服役环境更为苛刻,这对其水动力提出了更高的要求。本文以华能莱芜发电有限公司超超临界1 000 MW二次再热机组塔式锅炉为例,建立了水动力计算模型,通过现场数据采集和水动力计算相结合的方法,分析了BMCR、75%BMCR、50%BMCR、35%BMCR工况下的水动力特性及壁温分布规律。结果表明:下炉膛螺旋管圈水冷壁可以有效降低热负荷分布偏差带来的影响,明显减小流量分配偏差,抑制出口壁温偏差;上炉膛垂直管圈水冷壁虽然有一定的流量偏差,但由于超超临界二次再热机组塔式锅炉上炉膛内部有大量对流受热面,水冷壁的热负荷分布系数明显低于下炉膛,其壁温偏差仍然保持在合理的范围。  相似文献   

11.
在单回热半闭式超临界二氧化碳(supercritical carbon dioxide,S-CO_(2))循环中,CO_(2)在不同温度和压力下的比热容差异较大,导致回热器两侧工质的温度匹配性较差,不可逆损失较大。构建多级压缩回热过程是改善单回热循环回热性能的有效方法。该文在单回热循环的基础上,通过添加分流再压缩过程,提出再压缩半闭式S-CO_(2)循环,并获得6.63%的效率提升,同时从数学公式中证明效率提高的原因是叠加了净功。进一步构建三压缩循环时,发现回热器两侧工质流量的不匹配使得回热器内部出现温度交叉,体现出半闭式S-CO_(2)循环存在多种质量流耦合匹配问题,可通过对燃料、氧气和回流CO_(2)在回热器中进行流量匹配来解决。结果表明,三压缩循环相比再压缩循环的效率可进一步提高1.47%。通过构建多级压缩回热过程,充分挖掘了半闭式S-CO_(2)循环的效率潜力,可获得较好的性能。  相似文献   

12.
烟气再循环是超超临界二次再热机组锅炉常用的调温手段之一,其引起的受热面吸热量分配变化势必会对水动力和壁温分布造成影响。本文采用锅炉热力计算、炉内燃烧数值模拟和水动力计算相结合的方法,分析了循环烟气量和烟气抽取位置对水动力和壁温分布的影响。结果显示:烟气再循环会使负流量响应特性减弱,管间流量偏差减小;随循环烟气量的增加,水冷壁壁温整体上呈下降趋势,管间壁温偏差也有所下降;从省煤器后抽烟气时,水冷壁流量分配和壁温分布随循环烟气量的变化幅度小于从除尘器后抽烟气的方案。该研究成果可为采用烟气再循环调温手段的超超临界二次再热机组锅炉水动力设计和优化提供参考。  相似文献   

13.
通过耦合水冷壁的烟气侧和工质侧的换热模型,获得超超临界条件下水冷壁管内工质和管壁的温度分布情况。设置火焰中心和工质流量的偏差变量,研究其对600℃和700℃等级锅炉水冷壁管壁温度安全的影响。通过模型的计算结果与600℃等级的超超临界机组测试值对比,验证模型的准确性。计算结果表明:耦合模型计算温度和实测数据有较好的一致性;对于600℃等级锅炉的水冷壁,流量对壁面温度最高值的影响明显高于火焰中心偏移的作用;700℃等级超超临界锅炉水冷壁管壁和工质的温度分布规律和600℃等级锅炉的变化趋势基本一致。管壁的峰值温度约为619℃,远远超过600℃等级超超临界锅炉管材的允许温度;推荐管材的许用温度为650℃。  相似文献   

14.
阐述了超临界"W"火焰锅炉水冷壁的优化设计。针对超临界锅炉垂直管屏水冷壁运行中出现的热偏差较大和必须降低流动阻力的要求,以及"W"火焰锅炉由于炉型结构和水冷壁系统复杂,不便于采用螺旋管圈和炉内热负荷分布复杂的问题,根据实际运行数据、试验数据以及计算数据,论证了提高超临界"W"火焰锅炉性能的主要技术措施。包括:改进现有"W"火焰炉型结构,提高"W"火焰炉型对超临界压力下工质热物性的适应性能,避免现有2种炉型运行缺陷的叠加,掌握热负荷分布变化和水冷壁流量分配的一致性关系,控制水冷壁出口的温度和温度偏差,改进正流量补偿特性对水冷壁工质温度偏差的抑制作用的有限性,采用优化内螺纹管垂直管屏水冷壁和低质量流速等。  相似文献   

15.
在超临界二氧化碳布雷顿循环等热质循环输运过程中,存在超临界压力下冷热2股二氧化碳间的流动传热过程,其传热特性是影响相应系统性能的关键。本文以套管换热器为原型,对超临界压力下的冷热二氧化碳间的传热特性开展了数值模拟研究,分析了热流体入口温度、冷热流体入口流量对于传热特性的影响和周向的传热特性分布。结果表明:随着热流体入口温度的变化,热侧和冷侧的局部换热系数产生相应的变化和波动,同时冷侧局部换热系数在主流温度接近拟临界温度时,会出现明显的传热强化现象;另外,热侧二氧化碳质量流量的上升,会使得热侧换热系数提高,冷侧换热系数峰值减小且向冷流体入口处移动,而随着冷侧质量流量的上升,冷侧换热系数峰值增大且向冷流体出口处移动。这是由于套管换热器为水平布置,传热特性在周向上产生了明显的不均匀现象,其与流体密度变化在重力作用下的局部湍流效应增强和削弱有关。本研究对新型二氧化碳布雷顿循环等热质循环输运过程的开发和设计具有指导意义。  相似文献   

16.
根据并联管组各根管子进、出口降之间的关系,并考虑到分配集箱与汇集集箱中流体的静压变化,建立了锅炉过热器、再热器流量分配的非线性数学模型。该模型所使用的经验参数较少,具有较高的计算精度,并可求出每根管子中的工质流量。各根管子上的热负荷分布已知后,再考虑到流量分配特性,即可确定需要进行壁温校核的危险部位及其壁温。此方法克服了目前常用的电厂锅炉壁温计算方法中核核点工质流量与热负荷并一定互相对应的缺点。针对蒲城电厂330MW燃煤直流锅炉1号过热器的改造方案,利用本文提出的方法与电厂锅炉常用的壁温计算方法分别计算了100%与50%锅炉运行负荷下危险部位的壁温。结果表明,所有校核点的壁温均有在管材所允许的范围之内。  相似文献   

17.
带隔墙的600 MW超临界循环流化床锅炉水冷壁水动力特性   总被引:2,自引:1,他引:1  
对带隔墙的600 MW超临界循环流化床锅炉水冷壁进行水动力特性及方案选型研究。基于二分法对炉膛水冷壁进行水动力特性计算,得到了采用光管水冷壁加节流圈结构时各负荷下水冷壁出口工质温度及壁温参数。在100%锅炉最大连续工况时,水冷壁工质质量流率低于1000 kg/(m2×s)时可以保证出口温度在422 ℃以下,热偏差位于允许范围内。在75%与50%汽轮机验收工况负荷时水冷壁均未发生传热恶化现象。通过与内螺纹管布置方案计算结果比较,认为采用内螺纹管改善了壁温特性,但对热偏差的改善并没有明显效果。因此对于600 MW超临界循环流化床锅炉,采用光管水冷壁加节流圈结构是可行的。  相似文献   

18.
再压缩二氧化碳布雷顿循环具有结构简单、循环效率高的优点。然而,再压缩循环应用于燃煤电站时面临锅炉压降大、冷却壁温高和余热利用难的问题。部分冷却二氧化碳循环凭借其本身的循环特点,在与燃煤锅炉集成时可有效缓解以上问题。利用MATLAB软件编写了600 MW部分冷却二氧化碳循环燃煤发电系统的热力计算程序。首先研究了单一参数变化时系统循环效率的变化情况。结果表明:主压缩机入口压力和温度在临界点附近约7.8 MPa/32℃时循环效率达到最大值;预压缩机工作在临界点附近时系统效率突降;分流系数和再热压力分别在0.35和17 MPa时系统效率达到最高。随后,应用粒子群算法对部分冷却循环进行参数优化,结果表明部分冷却循环在合适的设计参数条件下,可以实现接近于再压缩循环的效率。相比于再压缩循环,部分冷却循环的质量流量下降了17.46%,锅炉入口温度从462.45℃降低到429.39℃。  相似文献   

19.
以超临界二氧化碳闭式布雷顿循环为研究对象,分析该循环方式的工质特性、循环特点及优势,表明超临界二氧化碳闭式布雷顿循环在燃煤电站、核能发电、聚光式太阳能发电及余热利用等领域应用前景广阔。  相似文献   

20.
超临界二氧化碳(supercritical carbon dioxide,S-CO_(2))燃煤发电技术被视为可替代蒸汽朗肯循环的新型发电技术。该文针对1000MW的32MPa/620℃S-CO_(2)动力循环燃煤发电机组,进行S-CO_(2)锅炉创新构型设计,可实现锅炉效率94.6%,发电标准煤耗245.6g/(kW·h)。为更好的研究机组变工况下的运行性能,基于Aspen Plus平台,建立1000MW级S-CO_(2)动力循环燃煤发电机组变工况模型。结果表明:在变负荷过程中,低压透平的工质体积流量受影响较大;机组的全厂热效率会随着负荷的降低而降低;主工质温度和和再热工质温度偏差是影响机组热经济性的主要原因。研究结果对未来建设S-CO_(2)动力循环燃煤发电机组具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号