首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The results of a survey study on food samples produced from genetically modified soybean and maize collected from the Egyptian market are presented. Forty samples of soybean and 40 samples of maize products have been gathered randomly from markets in Cairo and Giza. The genetic modification was detected by polymerase chain reaction (PCR) using official detection methods according to section 35 of the German Foodstuffs Act. Samples were investigated for the presence of material derived from the following genetically modified organisms (GMOs) all of which are approved for food use in Europe: Roundup Ready soybean (RRS) and maize lines Bt176, Bt11, T25 and MON810. In addition, samples were examined in qualitative and quantitative analysis for the presence of material derived from the transgenic maize line StarLink (Aventis) which was approved for animal feed use exclusively in the US. Twenty % of 40 investigated soy samples contained Roundup Ready soybean; 15% of 40 maize samples tested positive for Bt176 and 12.5% positive for Bt11 maize. Furthermore, the presence of StarLink maize could clearly be demonstrated in four samples mixed with Bt176 and Bt11. The percentage of StarLink was less than 1% in quantitative analysis. The maize lines T25 and MON810 were not detected.  相似文献   

2.
Information on the insertion site and characterization of the transgene(s) in genetically modified organisms (GMO) is very important for safety assessment and identification of a GMO. The generation of such information in general and in particular in emergencies or rapid alert situations involving GMO greatly benefit from the availability of simple, efficient, and rapid approaches. Here, we report on the improvement of a restriction independent method named “Rapid Amplification of genomic DNA Ends” (RADE). The method was developed using maize event MON810 genomic DNA as a model system, testing a standard Taq polymerase or a blend of polymerases (standard Taq and proofreading Tgo polymerases (LT-RADE)). Both methods produce an initial single strand DNA, followed by nested PCR steps and yield easy-to-isolate DNA fragments for further manipulation. We showed that the application of the Taq/Tgo polymerase blend significantly increased the size of the obtained PCR products. Using LT-RADE, we could successfully isolate the flanking regions of the transgenic insert of the GM maize event MON810 and confirmed the existing data on the adjacent regions of the insert. In addition, application of our approach allowed to efficiently isolate and identify, for the first time, the DNA sequences surrounding the insert of GM rice event LLRICE62.  相似文献   

3.
BACKGROUND: To implement genetically modified organism (GMO) labeling regulations, an event‐specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. RESULTS: In this study, specific primers and TaqMan probes based on the revealed 5′‐end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg?1 in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in‐house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in‐house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. CONCLUSION: This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The first genetically modified (GM) maize lines were approved for trading in Brazil after December 2007 and they were T25, MON810, Bt11, NK603 and GA21. The polymerase chain reaction (PCR) method was employed to monitor the presence of Bt11 and nested PCR was used to detect the presence of Bt176 in 81 maize‐derived products (maize flour, corn meal, maize flour flakes and polenta) that were sold in Brazilian market from 2005 to 2007, before the release of GM maize in Brazil. RESULTS: The PCR detection limit for Bt11 was 10 g kg?1 and for nested PCR of Bt176 it was 1 g kg?1. All Brazilian samples analyzed showed no positive signal for these GM maize events. CONCLUSION: Bt11 and Bt176 GM maize lines were not detected by specific PCR in 81 maize‐derived food samples sold in Brazil from 2005 to 2007, before the commercial release of GM maize in Brazil. These Brazilian food industries were in compliance with the rules stipulated by the current legislation with respect to consumer requirements about GMO labeling. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Investigations of the validity of labeling regarding genetically modified (GM) products were conducted using polymerase chain reaction (PCR) methods for foreign-made processed foods made from corn and potato purchased in the Tokyo area and in the USA. Several kinds of GM crops were detected in 12 of 32 samples of processed corn samples. More than two GM events for which safety reviews have been completed in Japan were simultaneously detected in 10 samples. GM events MON810 and Bt11 were most frequently detected in the samples by qualitative PCR methods. MON810 was detected in 11 of the 12 samples, and Bt11 was detected in 6 of the 12 samples. In addition, Roundup Ready soy was detected in one of the 12 samples. On the other hand, CBH351, for which the safety assessment was withdrawn in Japan, was not detected in any of the 12 samples. A trial quantitative analysis was performed on six of the GM maize qualitatively positive samples. The estimated amounts of GM maize in these samples ranged from 0.2 to 2.8%, except for one sample, which contained 24.1%. For this sample, the total amount found by event-specific quantitative analysis was 23.8%. Additionally, Roundup Ready soy was detected in one sample of 21 potato-processed foods, although GM potatoes were not detected in any sample.  相似文献   

6.
Specific legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a robust, quantitative, sensitive, nine-plex ligation-dependent probe amplification method, GMO-MLPA, for event-specific detection of maize TC1507, MON810, NK603, MON863, BT176, T25, GA21, construct-specific detection of BT11, and detection of the endogenous hmga maize reference gene. Ligated probes are amplified by PCR. Amplicons are detected using capillary electrophoresis. Specific GMO signals are normalised relative to the signal from the endogenous hmga gene and quantified by comparing with known standard curves. The method is suitable for quantification in the 0–2% range. Agreement was obtained in 149 of 160 determinations when 11 known mixtures of GMO and 9 food and feed samples were analysed using the GMO-MLPA method and compared to results from quantitative real-time 5′-nuclease PCR. The presented method is, therefore, suitable for quantification purposes for food and feed containing the most common maize GMOs.  相似文献   

7.
Specific legislation in the EU and several other countries requires that foods containing genetically modified organisms (GMOs) should be approved and labelled. This has necessitated the development of methods for detection of such materials. For screening purposes these methods should preferably enable detection of several different GMOs. Here we present a simple, robust, qualitative, nineplex PCR method for event-specific detection of maize T25, GA21, TC1507, MON863, MON810, NK603, construct specific detection of BT176, BT11 and detection of the endogenous hmga maize reference gene. PCR is carried out with primers labelled with fluorescent groups and the amplicons are detected using fluorescence capillary electrophoresis. Using mixtures of DNA from different certified reference materials, the detection limit was determined to approximately 0.1% for each GMO. Good agreement was observed in 85 of 88 determinations when eleven food and feed samples were analysed using the multiplex PCR assay and compared to results from quantitative real-time 5′-nuclease PCR. Discrepancies were only observed for one GMO at or close to the detection limit. The presented method is therefore suitable for screening purposes for food and feed containing the most common maize GMOs.  相似文献   

8.
A rapid on-, or near-site, quantitative method for use as a pre-harvest predictive decision, or co-existence monitoring, tool for adventitious genetically modified (GM) presence has been developed. Based on a laboratory-based protocol for real-time (RT) quantification of the MON810 GM event in maize kernels, the duplex RT polymerase chain reaction method was constructed around the portable Cepheid SmartCyclerII platform, requiring only modest support infrastructure for field application. Validation through an international ring trial showed good compliance with minimum assay performance requirements as defined by the European Network of GMO Laboratories (RSDr = 18.5%; RSDR = 32.8; Bias = 26.7%).  相似文献   

9.
Polymerase chain reaction (PCR)-enzyme linked immunosorbent assays (ELISAs) targeting either the 35S promoter or the Bt176 specific junction sequence were developed to screen for the presence of genetically modified organisms (GMOs) and specifically detect Bt176 maize in flours and starches. Two additional PCR-ELISA assays were developed to validate the results: one, based on the detection of the maize alcohol dehydrogenase 1 promoter specifically detected the presence of maize, and the other, based on the detection of a conserved sequence of plants ( 26S ribosomal RNA gene), validated the extracted DNA amplification. The PCR-ELISA assays developed here were highly specific and found to be as sensitive as the reference Southern hybridisation assay. The PCR-ELISA tests were at least 6 times more sensitive than gel electrophoresis and allowed 0.1% GMOs to be detected in Bt176, Bt11, Mon810 maize and Roundup Ready soybean. The PCR-ELISA tests are a method of choice for GMO screening and identifying Bt176 maize in flours and native starches. They may offer a cheaper alternative to the expensive real-time PCR assays and may be useful in laboratory GMO monitoring.  相似文献   

10.
Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification.  相似文献   

11.
转基因棉花MON88913转化体特异性定性、定量PCR检测方法   总被引:1,自引:0,他引:1  
本文以我国批准商业化的转基因耐草甘膦棉花MON88913为研究对象,建立并验证了其转化体特异性定性、定量PCR检测方法.建立的定性PCR方法的检测极限是20个拷贝棉花单倍体基因组DNA,定量PCR方法的检测和定量极限分别是10和20个拷贝棉花单倍体基因组DNA.同时,我们组织了实验室5位研究人员对建立的定量PCR检测方法进行了协同验证.对5个盲样的定量分析结果显示与真实值的偏差介于1.59% 和10.12%之间,完全满足国际标准25%偏差范围的要求,完全可用于转基因棉花MON88913的实际样品检测.  相似文献   

12.
Specific legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. This has necessitated the development of methods for detection and quantification of such materials. Here we present a robust, quantitative, 9-plex PCR method for event-specific detection of maize TC1507, MON863, MON810, T25, NK603, GA21, construct specific detection of BT11, BT176 and detection of the endogenous hmga maize reference gene. The method is suitable for quantification in the 0–2% range with a detection limit of approximately 0.1%. PCR is carried out in two stages. In the first stage, bipartite primers containing a universal 5′-sequence and a GMO specific 3′-sequence are used. In the second PCR stage only a universal primer is used. Trypsin digestion between the first and second PCR stages enhances signal strength and reproducibility. Probes hybridising to the PCR amplicons are then labelled by primer extension and detected by fluorescence capillary electrophoresis. Good agreement was observed in 76 of 80 determinations when 10 food and feed samples were analysed using the multiplex PCR assay and compared to results from quantitative real-time 5′-nuclease PCR. The presented method is therefore suitable for quantification purposes for food and feed containing the most common maize GMOs.  相似文献   

13.
In response to the increasing number of genetically modified (GM) events released on the market, control laboratories explore various strategies to simplify and reduce the number of tests needed to characterise the content in genetically modified organism (GMO) of a given sample. Lastly, multiplexing is considered as one of the possible ways to decrease the time and cost of analysis. Here, we report the development of four duplex polymerase chain reaction (PCR) tests for the identification and the quantification of four maize transformation events from which commercial lines have been authorised in Europe namely, Bt11 and Bt176 (Syngenta, DE, USA), Mon810 MaisGard? (Monsanto, MO, USA) and T25 Liberty Link? (Bayer CropScience, Monheim, Germany). The duplex PCR tests combine a maize-specific PCR test hybridising in the Adh1 locus with an event-specific detection system designed on a junction fragment for each of these four GM maize. Real-time PCR tests, suitable to comply with the European regulation, were designed by using Taqman® chemistry.  相似文献   

14.
Two real-time PCR approaches for the detection of genetically modified (GM) rice were tested: (1) a combination of SYBR® Green real-time PCR methods detecting the 35S promoter (P-35S) of Cauliflower Mosaic Virus, the nopaline synthase terminator (T-nos) of Agrobacterium tumefaciens and the Bacillus thuringiensis (Bt) CryIAb/Ac toxins and (2) a P-35S/T-nos duplex TaqMan® real-time PCR system. Both systems correctly recognized their respective targets in control samples of Bt63, Kefeng6 and KMD1 insect-resistant and LLRice62 and LLRice601 herbicide-resistant rice. Due to its lesser specificity but broader genetically modified organism (GMO) coverage capacity, the SYBR® Green real-time PCR approach was further tested in more detail. Melting curve, capillary and agarose gel electrophoresis analyses indicated that the P-35S, T-nos and CryIAb/Ac targets in the GM rice events are similar to the corresponding targets present in many known GMOs. High-resolution melting analysis showed that the CryIAb/Ac targets of the GM rice events Bt63 and Kefeng6 matched best the corresponding Bt11 CryIAb sequence. Digital PCR analysis on genomic DNA from the GM rice Bt63 and Kefeng6 events indicated that both GMO contained multiple inserts. Sensitivity tests showed that all SYBR® Green real-time PCR methods could detect their targets at less than an estimated five copies per reaction. Finally, it was shown that these SYBR® Green real-time PCR methods could detect low levels of their targets in rice consignments originating from China. Together, these results demonstrated that a ‘P-35S and T-nos and CryIAb/Ac’ combinatory SYBR® Green real-time PCR screening is highly suited to trace the respective targets including the possible presence of Bt63, Kefeng6 and KMD1 GM rice materials in food products.  相似文献   

15.
A novel real-time PCR-based analytical method was established for the event-specific quantification of a GM soybean event MON89788. The conversion factor (C(f)) which is required to calculate the GMO amount was experimentally determined. The quantitative method was evaluated by a single-laboratory analysis and a blind test in a multi-laboratory trial. The limit of quantitation for the method was estimated to be 0.1% or lower. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were both less than 20%. These results suggest that the established method would be suitable for practical detection and quantification of MON89788.  相似文献   

16.
实时荧光PCR定量检测加工产品中转基因玉米Mon810成分   总被引:4,自引:1,他引:4  
覃文  曹际娟  朱水芳 《食品科学》2003,24(8):132-134
采用实时荧光PCR技术,建立了定量(性)鉴定检测加工产品中转基因玉米Mon810成分的方法。实验设计的可以扩增玉米自身基因和外源基因边界序列的引物和探针具有品种和品系特异性,特异性地检测出食品、饲料等加工产品中转基因玉米Mon810成分。某些检测样品不仅检出转基因玉米Mon810成分,还同时检出其它转基因玉米品系或其它转基因品种。本研究实验建立的转基因玉米Mon810品系鉴定检测方法,即可以用于加工产品中转基因成分的定量检测(检测低限为0.1%),也可以用于定性检测,或作为常规PCR定性检测后的确证实验方法。  相似文献   

17.
The number of real-time polymerase chain reaction (qPCR) instruments available has greatly increased over recent years. However, little information is available on the performance of validated quantitative methods when tested in different instruments. A study has been designed to evaluate the robustness of three validated methods for genetically modified organisms (GMO) quantification across six real-time platforms from four different suppliers. The performance of three validated methods for event-specific detection of Bt11 maize, DAS 59122 maize and MON 89788 soybean was evaluated on six qPCR platforms (ABI 7900 HT, ABI Prism® 7700 and ABI 7500 from Applied Biosystems; LightCycler® 480 from Roche; Mx3005P® from Stratagene; and iQ?5 from Bio-Rad). Method performance criteria were compared against European Network of GMO Laboratories method performance requirements for analytical methods of GMO testing. The latter comparison indicates that the criteria are fulfilled for most of the platforms and levels of GMO concentrations, though with minor exceptions. The analysis of variance (one-way) indicated that the quantification of GMOs was affected by the platforms, which did not respond consistently across GM levels. A two-way analysis of variance confirmed that there were significant interactions between platforms and GM levels. The pairwise comparison of the platforms' performance indicated that some deviate significantly from others, though differences between methods were observed.  相似文献   

18.
A multiplex polymerase chain reaction (PCR) method was developed to identify and distinguish 3 kinds of stacked genetically modified (GM) maize (MON810× MON863, NK603×MON863, and NK603×MON810× MON863). Four primer pairs, SSIIb JHF/JHR, C3b 5′/TAP1–3′, HS01/cry-CR01, and HS01/CTP164-3′ yielded 101, 129, 194, and 314 bp amplicons, respectively, Using the genomic DNA of the 3 stacked GM maize as templates, 3 or 4 corresponding PCR amplicons were amplified with similar band intensities by the multiplex PCR. The limit of detection (LOD) was approximately 0.5% for 3 kinds of stacked GM maize, using the multiplex PCR. The detection system using multiplex PCR developed in this study may be applicable to monitoring, identifying, and distinguishing not only the stacked GM maizes but also other stacked genetically modified organisms (GMOs).  相似文献   

19.
Maize MON 810 is one of the European Union’s (EU) authorized genetically modified organisms (GMO) for placing on the food and feed market. The total number of MON 810 varieties registered in the European Common Catalogue of varieties of agricultural plant species has almost tripled since 2005. One of the requirements described in EU legislation, namely the genetic stability of GM seed varieties, was thus assessed by analyzing the intactness of the entire MON 810 integration and its genotypic stability in commercial varieties available on the market for at least the last 2 years. A combined strategy using qualitative analytical methods made possible to determine the presence/absence of the individual genetic elements and of the whole GM construct. The restriction fragment length polymorphism patterns obtained from amplified whole constructs by long polymerase chain reaction (PCR) were compared side by side. CryIA(b) protein expression levels were determined by enzyme-linked immunosorbent assay. Twenty-four out of the 26 analyzed varieties met the expected stability features. One variety gave negative results in all assays, and one variety contained the necessary genetic elements for expressing CryIA(b) protein although giving negative results for the long PCR product. To our knowledge, this study is the first post-marketing stability analysis performed on GM commercial seed varieties.  相似文献   

20.
Legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a simple and accurate capillary electrophoresis multiplex quantitative competitive PCR (ce-mqcPCR) method for event-specific quantification of the five novel GM maize events DAS59122, LY038, MON88017, MIR604 and Event 3272. The method combines the simplicity of constructing multiple competitors in silico with the high resolution and sensitivity of fluorescence capillary electrophoresis and the use of an internal template reference amplicon. The competitors are synthesised commercially and added in equal amounts as a restriction enzyme-digested plasmid insert to the multiplex PCR. Quantification is performed by analysing the relative amounts of GMO and GMO competitor fragment pairs after capillary electrophoresis and correcting for differences in maize DNA by comparing with the internal reference gene amplicon. Since the competitors employ the same primers as their corresponding targets, all existing qualitative multiplex PCRs can in principle easily be converted to quantitative assays without changing primer sets or amplification conditions. The ce-mqcPCR method correctly determined 120 GMO templates in known mixed samples. No false-positive or false-negative signals were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号