首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
以烧结后的混合氧化物试样作阴极,高密度石墨炭棒作阳极,在850 ℃ CaCl2熔盐中,3.1V 电压下进行电解脱氧反应,研究制备AB5型储氢合金CeNi5、LaNi5、CeCo5及CeFe5的可行性.结果表明,1 200 ℃烧结的混合氧化物试样经过11 h电解可制备出CeNi5、LaNi5,产物呈疏松的海绵状,孔隙率及比表面积较大.同样条件下无法制得CeCo5和CeFe5.  相似文献   

2.
高筠  周正  王岭  戴磊 《化学工程师》2007,21(8):11-13,39
通过固态NiO在CaCl_2-NaCl熔盐中直接电化学还原制备Ni的电解产物随时间变化分析,石墨阳极破损研究以及对NiO低于理论分解电压的槽电压分解现象的解释,探讨了熔盐电解NiO制备Ni的电解反应机理。认为电解反应基本服从氧离子化机理,且NiO阴极片在低于理论分解电压的槽电压下,电化学还原反应和热还原反应同时发生。  相似文献   

3.
通过电解高温熔融Li0.896Na0.625K0.479CO3混合碳酸盐制取碳燃料,并由中间产物Li2O、Na2O、K2O吸收空气中CO2使碳酸盐电解质再生,从而构筑一个完美的良性循环,最终将CO2转化为C物质。实验通过极化曲线、循环伏安曲线对反应的电化学性能进行了研究,考察了电极材质、电解温度以及相同电量下不同电流强度和电解时间对反应结果的影响,并借助SEM-EDS、TG/DTA、XRD等手段对提纯后的产物进行表征。结果表明:Fe作阴极、Ni作阳极时的电势值较低、电极稳定性较好;随温度的升高,电势的绝对值降低,温度为500 ℃时对反应较有利;1 A?h的电量下,电流强度1.0 A、电解时间1 h时,反应的电流效率较高,可达65.98%;电解产物为无定形碳,含碳量可达80%以上。本研究为二氧化碳的资源化利用提供了一种新途径。  相似文献   

4.
采用FFC剑桥工艺以NiO粉末或NiO-La2O3(Ni:La=5:1)粉末为原料经一步熔盐电解成功制备了金属Ni和LaNi5合金.将模压成型的NiO或NiO-La2O3片烧结后作为阴极,高密度石墨棒作为阳极,在CaCl2-NaCl混合熔盐中进行电解.研究了成型压力、烧结温度、槽电压和电解时间等对制备LaNi5合金的影响.得到熔盐电解制备LaNi5的适宜条件为NiO-La2O3粉末在30MPa下模压成型,850℃烧结5h后,在850℃的CaCl2-NaCl熔盐中,3.1V槽电压下电解36 h.探讨了制备LaNi5的反应机理.估算在适宜的工艺条件下电解NiO-La2O3制备LaNi5的电流效率为7.65%,电能消耗为26678.1 kW·h/t-LaNi5.  相似文献   

5.
KCl-NaCl等摩尔熔盐体系是常见的高温熔盐体系。相比于LiCl-KCl共晶盐体系,KCl-NaCl等摩尔熔盐体系允许的操作温度更高,从而可以将金属转变为液态,以便收集。本文在850℃条件下电解CeCl_3-KCL-NaCl熔盐,以99.3%的产率制备了金属铈。金属铈在坩埚底部直接获得并与熔盐快速脱模,经ICP-AES分析金属的纯度大于99.17%,EDS分析金属纯度大于99.9%。实验建立了电解过程化学模型,解释了电解效率关于电流大小的变化趋势,电流效率最高时使用的电流为3 A(电流密度为0.6821 A/cm~2)。电解过程使用搅拌桨将导致液态金属铈过度分散而无法收集。  相似文献   

6.
在900℃下,采用循环伏安法对CaCl2-CaO熔盐中金属钙的电沉积行为进行了研究。研究结果表明,在CaCl2熔盐中加入CaO后,熔盐中Ca2+的还原电位正移,且Ca2+的还原过程受扩散控制。  相似文献   

7.
介绍了氯化物熔盐体系、钕镁中间合金法、钙热真空还原氟化钕法和氟化物体系熔盐电解氧化钕法等制取金属钕的工艺,说明了它们的优缺点。提出了稳定和降低金属钕中碳含量的方法,建议提高单炉电流强度、扩大设备,扩大品种向铁舍金引申。用上挂圆桶型阳极取代石墨电解槽、石墨电极单相电弧加热取代电解槽外部硅碳棒加热装置可取得较好效果。  相似文献   

8.
熔盐电解二氧化锰制备锰新工艺研究   总被引:3,自引:0,他引:3  
提出了以二氧化锰为原料经一步熔盐电解得到锰新工艺,具有工艺流程短、低能耗、无环境污染等特点.采用850°C的NaCI-CaC12混合熔盐体系,以烧结后的MnO2片作为阴极,高密度石墨碳棒作阳极,在工作电压(2.8-3.2 V)下进行电解.研究了不同的烧结温度、电解电压和电解时间等因素对阴极片形貌及其对电脱氧反应的影响,结果表明采用熔盐电解MnO2粉末直接制备金属Mn的最佳的工艺条件为:MnO2粉末在20 MPa下压片,1 000°C烧结5 h后,在850°C的NaC1-CaC12混合熔盐中加3.0 v的工作电压电解13 h.  相似文献   

9.
采用熔盐脉冲电解法对20钢进行渗硼实验,利用正交试验考察了电流密度、占空比、渗硼温度、时间及硼砂物质的量等因素对渗硼层厚度的影响。结果表明,各因素对20钢渗硼层厚度影响的主次顺序为,渗硼温度电流密度硼砂物质的量占空比渗硼时间。最优工艺参数电流密度为12 A/dm2、占空比20%、渗硼θ为850℃、t为90 min、熔盐摩尔配比n(Na Cl)∶n(KCl)∶n(Na F)∶n(Na2B4O7)=1∶1∶3∶0.04。按最优工艺进行电解渗硼,得到的渗层较厚,渗层组织较细致紧密。  相似文献   

10.
分解电压是探索电极过程机理和实际电解过程中电位控制的重要依据。计算了氧化铈在CeF3-LiF-MF2(M=Ba,Ca)熔体中石墨阳极上的理论分解电压。在石墨阳极上,阳极生成碳氧化合物的理论分解电压较小,反应较易发生;在惰性阳极下,理论分解电压按氧化铈、三氟化铈、氟化锂、氟化钡、氟化钙的顺序依次增大,氧化铈将优先发生分解反应。两种电极条件下,氧化铈的分解电压随温度升高而降低,随氧化铈浓度降低而增大,当氧化铈浓度过低时,容易发生阳极效应。  相似文献   

11.
对熔盐电解法制备硼粉的方法进行了论述,比较了各熔盐体系的优点和缺点,得出了氯化钾或氯化钾和氟化钾混合物的熔盐体系最适宜。用冷却曲线法对KF-KCl-KBF4体系熔盐体系的初晶温度进行了研究,研究表明:KF-KCl-KBF4体系的初晶温度为1 023—1 033 K,即750—760℃之间,当电解温度高于初晶温度20—30℃时,电解效率最高。这就为熔盐电解法制备元素硼提供了依据。  相似文献   

12.
电解法制备硼粉过程电流效率的影响因素   总被引:1,自引:0,他引:1  
电流效率是电解法制备单质硼的一个重要生产指标,它涉及到硼电解槽的产量和电耗。在电解槽型的设计过程中,如何提高熔盐电解的电流效率对于硼粉的单位时间产量、降低单位电耗等主要技术经济指标具有重要的意义。文中采用氟化钾-氯化钾-氟硼酸钾体系,进行了实验研究。在电解槽内测定了制备过程中电流效率随电解温度、电流密度、电极间距离、电解时间的变化关系。结果表明:当电解温度为760—790℃、电流密度在0.8—1.14 A/cm2、电解时间为2.5—3 h、极间距离为4 cm时,电解的电流效率最高。  相似文献   

13.
中国钛原料钙镁含量高,主要采用熔盐氯化法处理,会产生大量废盐难以处理。研究氯化熔盐体系的黏度特性对于开发该工艺产生的大量废盐利用新方法具有重要意义。综述了国内外对氯化熔盐体系黏度影响规律的研究:从氯化熔盐体系的熔盐离子出发,探讨了Ca2+、Mg2+、Na+及K+等对氯化熔盐黏度的影响;从反应条件出发,探讨了温度、气氛和添加剂对氯化熔盐黏度的影响。结合当前对氯化熔盐体系黏度的研究,针对NaCl-KCl-CaCl2-MgCl2四元氯化熔盐体系,在不同温度条件下改变气氛或者添加剂,对体系黏度的变化规律进行了考察。通过改变氯化熔盐体系的黏度,寻求适合高温相转化渣高效分离的手段和方法,对高温相转化法高效循环处理熔盐氯化废渣具有重要意义,并能有效推动中国熔盐氯化法的发展。  相似文献   

14.
熔融盐电镀金属钛的探讨   总被引:1,自引:0,他引:1  
金属钛具有优良的性能。然而,由于其价格昂贵,限制了其应用。因此,在各种廉价金属表面电镀钛正日益受到人们的重视。采用熔融盐体系电镀金属钛。介绍了熔融盐体系电工艺及参数的选择,概述了电镀钛的操作过程,提出了熔融盐中电镀钛需进一步研究的问题。  相似文献   

15.
采用熔盐脉冲电解法在20钢表面制备出渗硼层,与其它渗硼方法所得渗层的组织形貌进行了对比,并对所得渗层的耐蚀性及其机理进行了研究。结果表明,熔盐脉冲电解渗硼法比其它方法温度低、耗时短,渗硼效率高,所得渗层较厚,组织致密,呈梳齿状嵌入基体,与基体结合牢固。渗硼层耐硫酸、盐酸和氯化钠腐蚀,不耐硝酸腐蚀。  相似文献   

16.
三聚氰胺工艺中熔盐的再生及更换   总被引:1,自引:0,他引:1  
提出2种熔盐再生方案,采用1种特殊方法将高温熔盐从储槽中取出,实现了熔盐的安全更换。  相似文献   

17.
以高锰酸钾和醋酸锰为原料,用熔盐法在KCl-LiCl体系中合成了二氧化锰(MnO2)电极材料。用X射线衍射(XRD)对其结构进行了考察,结果表明,合成样品含α-MnO2和γ-MnO2的混合晶相。用扫描电子显微镜(SEM)对样品形貌进行了表征,照片显示样品为棒状纤维。在c〔(NH4)2SO4〕=2 mol/L电解液中采用三电极体系对样品进行循环伏安、交流阻抗和恒流充放电测试,结果显示该材料在0~1 V(SCE)的电位窗口内具有良好的矩形特征和动力学可逆性;其等效串联电阻(Rs)和电极反应电阻(Rr)分别为0.67Ω和0.72Ω;在电流密度为2 mA/cm2时,单电极放电比容量达到246.20 F/g,表现出优异的超级电容特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号