首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于AMD-ICSA-SVM的超短期风电功率组合预测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风机出力的随机性、波动性和不确定性,提出了一种基于解析模态分解(AMD)和改进布谷鸟优化支持向量机(ICSA-SVM)参数的超短期风电功率组合预测方法。首先,利用解析模态分解将风功率序列分解为不同频率范围的分量,减小不同频率范围间的相互影响。然后针对各序列特点,采用改进布谷鸟方法分别寻找各自支持向量机的惩罚因子参数和核函数参数,以提高单个模型的预测精度。最后对预测结果进行叠加和误差分析。仿真算例表明,所提出的方法可以很好地跟踪风电功率的变化,有效地提高风电功率预测精度。  相似文献   

2.
为了提高风电场输出功率的预测精度,应用小波分析(WD)和布谷鸟优化支持向量机(CS-SVM)算法对风电功率进行超短期预测,对比于通过预测风速间接求得的风电功率更加直接且准确。首先,利用WD与重构,将风电功率模型分解成近似序列和细节序列,然后利用CS-SVM算法对每个序列进行预测,得到每个序列的预测结果,最后把各个序列的预测结果叠加,形成风电功率的最终预测值。算例计算结果表明,预测结果具有较高的精度,与SVM以及其他方法优化的SVM预测结果相比,文中使用的方法预测结果更加准确,具有较强的优越性和实用性。  相似文献   

3.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。  相似文献   

4.
王聪  高得莲  赵轩 《电源技术》2016,(5):1084-1086
风电场输出功率具有随机性、间歇性以及可控性弱等特点,提高风电功率预测精度对含有大规模并网风电的电力系统安全经济运行具有重要意义。基于支持向量机(SVM)建立短期风电功率的均值预测模型,利用Copula函数对多时段风电功率的预测误差进行相依性建模,结合风电功率的预测均值和预测误差相依性结构,形成短期风电功率场景集合,可以直接用于机组组合等决策过程中。基于某实际风电场进行仿真分析,结果表明,考虑预测误差相依结构的场景集合能够包含风电功率实际值曲线,显示了方法的有效性。  相似文献   

5.
超短期风速预测对保证风电并网运行可靠性和维持电力系统安全稳定具有重要的意义,针对风速预测中不同因素对风速影响程度不同的特点,本文提出一种基于互信息属性分析与极端学习机的超短期风速预测方法。首先,选取与风速相关的68种候选属性因素,分别计算其相对于风速序列的互信息值,根据互信息,衡量属性对风速的影响程度,并选择输入属性;然后,由互信息值计算属性权值;之后,采用加权处理后的属性值来训练极端学习机,构建风速预测模型;最后,采用新模型预测未来4h内风速。采用北纬39.91°、西经105.29°的美国风能技术中心的实测数据开展实验,实验结果表明,新方法具有良好的预测精度,能够满足实际风速预测需要。  相似文献   

6.
相空间重构的极端学习机短期风速预测模型   总被引:4,自引:0,他引:4  
对风速进行快速、准确的预测,可以有效地减小或避免风电场对电力系统的不利影响,同时提高风电场在电力市场中的竞争能力.根据风速具有混沌特性,提出一种相空间重构的极端学习机(extreme learningmachine,ELM)的短期风速预测模型,通过确定延迟时间和嵌入维数,对样本空间进行重构,使新的样本更能反映风速变化特性,在此基础上运用ELM进行短期风速预测.与传统的预测模型相比,该方法具有学习速度快、泛化性能好等优点,为风速预测提供了新方法.  相似文献   

7.
基于改进EEMD-SE-ARMA的超短期风功率组合预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风力发电功率时间序列具有非线性和非平稳性的特性,提出了一种改进的集成经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)-样本熵(Sample Entropy,SE)-ARMA的风电功率超短期组合预测模型。将EEMD分解中添加的白噪声信号改为添加绝对值相等的正负两组白噪声信号,并将MEEMD分解过程中的EMD步骤使用端点延拓和分段三次埃尔米特插值进行改进,形成一种改进的EEMD分解算法(即MEEMD)。利用MEEMD-SE将风力发电功率时间序列分解为一系列复杂度差异明显的风电子序列;针对每一个不同的子序列建立适当的ARMA预测模型;将各预测分量进行叠加重构,得到最终的风电功率预测值。通过算例分析及与其他几种预测模型预测结果的对比,证明MEEMD-SE-ARMA组合预测模型可以有效地提高风力发电功率超短期预测的精度。  相似文献   

8.
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。  相似文献   

9.
较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极端学习机的超短期风速预测方法。该方法首先利用小波变换和主成分分析对风速数据进行去噪和降维处理,剔除数据的不规则波动,有效降低数据维度;然后分别应用谱聚类对小波变换后的各分解序列进行聚类分析,减少训练样本空间,提高样本有效性,降低计算复杂度;再应用极端学习机对各分解序列分别进行训练,同时通过遗传算法对极端学习机输入权值、偏置等参数进行优化,确保各分解序列输出最佳预测模型;最后将各分解序列预测结果相加得到最终预测结果。以某风电场实际数据进行的建模结果表明该模型有效实现了对风速的超短期、多步预测,采用的方法合理有效。  相似文献   

10.
基于GA优化SVM的风电功率的超短期预测   总被引:7,自引:1,他引:7       下载免费PDF全文
研究风电功率预测技术对于减轻其输出电能的随机性对电力系统的影响具有重要意义。首先结合风电监控系统数据库中的历史功率数据和环境参数形成样本数据,同时采用遗传算法优化该模型的核函数类型、核函数参数及错误惩罚因子等参数,建立了GA-SVM模型,提高了模型参数组合优化选择的效率和预测精度。最后结合实例验证,并与标准SVM方法和BP神经网络方法比较。预测效果表明:所提出的GA-SVM优化模型在超短期风电功率预测上具有更优的学习能力和泛化能力。  相似文献   

11.
为了减小风力发电的随机性对电力系统的影响,提出了一种基于最小二乘支持向量机的风功率短期预测模型。在研究最小二乘支持向量机的基础上,为解决最小二乘支持向量机建模时其参数对预测性能影响,运用粒子群算法对参数进行优化,最后建立了基于粒子群优化最小二乘支持向量机的预测模型。运用某风电场的实测数据进行仿真研究,为了对比分析,同时利用E1man神经网络模型和支持向量机模型进行了预测,仿真结果表明,本文所提方法与其它方法相比预测精度更高,可以有效地应用于风功率的预测。  相似文献   

12.
风电功率预测多采用统计预测模型,为了达到可接受的预测精度,需要大量的历史数据对模型进行训练,不适用于缺少历史数据的新建风电场,为此提出基于小样本集的网侧风电功率预测方法。基于风电场少量的历史数据,运用支持向量机方法建立了网侧风电功率预测通用模型,并用此通用模型对风电场功率进行初步预测;在通用模型预测的基础上,利用区域内风电场的特征参数对这一网侧通用模型进行辨识和修正,从而得到区域电网网侧风电功率预测结果。实际算例验证了基于小样本集的预测方法的可行性,实际预测精度较好,说明该方法适于历史数据样本较小的风电场的功率预测,能够减少功率预测中统计预测方法对数据的依赖。  相似文献   

13.
高鹭  孔繁苗  张飞    任晓颖    张晓琳  秦岭 《陕西电力》2022,(4):27-34
针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电场的历史数据进行提前0~15 min试验。结果表明,提出的IPSO-BiLSTM-AM模型具有较高的预测精度,可以为风电场电力调度与控制提供科学参考。  相似文献   

14.
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。  相似文献   

15.
基于连续时间段聚类的支持向量机风电功率预测方法   总被引:2,自引:0,他引:2  
提出了一种基于连续时间段聚类的支持向量机风电功率预测方法。通过2次聚类把全年分为若干个类型的连续时间段,并对同类型时间段使用支持向量机建模,建立后的模型用于其他年份对应时间段的预测。与神经网络相比,支持向量机建模方法避免了局部最优。利用国内某风电场数据进行对比实验,证明了所述方法的有效性。  相似文献   

16.
基于风速云模型相似日的短期风电功率预测方法   总被引:2,自引:0,他引:2  
风电功率预测是解决风电不确定性影响的重要基础和必要手段,高比例风电并网条件下对每个时刻点的预测精度要求都将更为严格。训练样本是影响预测精度的关键因素之一,但由于实际天气系统的复杂多样性和类属模糊性,定向选择与调度时段内风况相似的训练样本对预测精度至关重要。因此,提出了基于云模型定向选取风速相似日数据作为训练样本的短期风电功率预测方法,能够对指定时段内风速随机性和模糊性特征进行学习和建模,通过对历史数据的定向筛选和精细化利用提升预测精度。首先,以日为单位建立历史风速的云模型数据库;然后,建立云模型相似度量化指标,用于判断与待预测时段风速云模型最为相似的历史数据序列,以此为训练样本建立短期风电功率预测模型。在实际预测中,每日根据天气预报信息滚动更新训练样本和预测模型,提高预测精度。最后,选择中国北方某风电场运行数据进行实例分析,结果证明了所提方法能够提高风电功率预测精度,具有一定的工程实用价值。  相似文献   

17.
基于改进人工鱼群优化支持向量机的短期风电功率预测   总被引:1,自引:0,他引:1  
针对人工鱼群算法中固定的视野和步长导致算法寻优速度变慢、易陷入局部最优等问题,引入了一个变系数因子来自适应调节人工鱼在聚群、追尾和觅食行为中的视野和步长;此外,为了降低算法后期运算复杂度以获得更多有效的人工鱼,加入一种人工鱼群最大迭代次数淘汰机制。将改进后的人工鱼群算法用来优化支持向量机中的核函数参数和惩罚参数,并应用到风电场短期风电功率预测中。通过实验仿真对比得出改进的人工鱼群优化支持向量机在短期风电功率预测中有较好的效果。  相似文献   

18.
杨茂  张强 《中国电力》2016,49(8):64-68
风能的波动性和随机性给风电功率预测带来了很大的影响,准确合理的预测可以使系统可靠、持续、稳定运行。提出一种基于相关向量机的超短期风电功率预测方法。相关向量机是在贝叶斯理论的基础上提出的一种概率学习模型,与支持向量机相比,相关向量机具有概率模型稀疏、核函数计算量小等优点。对滚动多步预测模型进行了分析,建立了相关向量机的风电功率预测模型。利用该方法对吉林西部若干风电场进行功率预测,结果表明,所提出的预测模型能有效地提高预测精度,对工程有较高的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号