首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过改变有机酸与无机酸的配比研究合成高电导率聚苯胺的最佳条件,使用硝酸对活性炭进行改性,测定活性炭的沉降质量和活化指数并筛选出吸附性能最佳的改性活性炭,将最佳工艺条件下合成的聚苯胺与改性活性炭进行复合制备了聚苯胺/改性活性炭复合电极材料。通过X射线衍射、扫描电子显微镜和电化学性能测试对复合电极材料的结构和性能进行表征和研究。结果表明:用质量分数3%的硝酸改性的活性炭掺杂聚苯胺,二者的相容性最好,且改性活性炭含量为25.5%(质量分数)时,制备的复合电极材料比电容最大,为282F/g,比纯聚苯胺的比容量(210F/g)增加了34.3%。电化学性能测试表明,聚苯胺/改性活性炭复合电极材料内阻小,阻抗高,电容性能优良。  相似文献   

2.
NiO-改性活性炭电极电化学电容器研究   总被引:1,自引:0,他引:1  
为提高普通活性炭材料的电化学性能,用Ni(NO3)2溶液浸渍法和高温热解对活性炭进行改性处理.分别采用氮气吸附法、SEM、XPS等方法分析研究改性炭材料的比表面积、孔结构、形貌和组成;用循环伏安、恒流充放电等电化学方法研究改性活性炭电极构成的电化学电容器性能.结果表明,由Ni(NO3)2热解产生的NiO有准电容效应,与活性炭原有的双电层电容构成了复合电容,因而改性炭的电容量有明显的提高,其质量比电容达到246.1 F/g,比原样炭的130.1 F/g提高了89.2%,表观体积比电容和面积比电容分别高达169.7 F/cm3和30.1 μF/cm2,均显著优于普通炭材料.  相似文献   

3.
以废弃中密度纤维板为原料,通过K2CO3活化制备活性炭双电层电容器电极。探讨炭化温度(500℃)、碱炭比(K2CO3与炭化物的不同质量比,即2.5、3、3.5和4)、活化温度(800℃)和活化时间(1 h)对电极电化学性能的影响,并对活性炭进行表面化学结构、孔隙性质和电化学性能进行表征。结果表明,经炭化和活化作用,所得活性炭均含有氮元素,含氮质量分数为0.93%~2.86%。在不同质量活化剂K2CO3的作用下,所得活性炭BET比表面积分别为569~1027 m2/g,不同比表面积活性炭作电极经测试得到不同质量比电容,所得比电容为147~223F/g。另外,当碱炭比为3.5时,所得活性炭电极的质量比电容和电化学性能最佳,归因于此条件下所制活性炭具有高比表面积和大的孔隙,并含有含氮官能团。  相似文献   

4.
采用水热法合成比表面积1850m2/g、粒径lμm的中孔炭微球(MCM);而后将所制MCM加入比表面积为3200m2/g的超级活性炭(HSAC)中制成用于双电层电容器的复合电极材料,并研究了该复合电极材料的电化学性能.结果表明:在比表面积为3200m2/g的HSAC中添加质量分数20%的MCM后,其颗粒接触内阻、离子扩散内阻明显降低;在6mol/L的KOH电解液体系中,在12A/g的电流密度下,其比电容仍能稳定在230F/g.而在同样的条件下,纯HSAC和纯MCM的比电容仅分别为190F/g和148F/g.复合电极在大电流下电化学性能的提高应归因于MCM合适的粒径、中孔结构及其较高的比表面积.  相似文献   

5.
以柚子皮水热炭为前驱体,KOH为活化剂,800℃活化制备层次孔炭电极材料。采用扫描电子显微镜(SEM)、N2吸附法对活性炭的表面形貌和孔结构进行了表征,并评价了其在无机电解液体系(3mol/L KOH)中的电化学性能。结果表明,碱碳比为1∶1时制备的活性炭呈蜂窝状结构,其比表面积、总孔容分别达到1421 m2/g和0.7626cm3/g,相应的电极材料具有典型的双电层电容特性,质量比电容和体积比电容分别达到226F/g和250F/cm3(电极片密度为1.1g/cm3),1000次循环之后电容保持率达到91.45%。与柚子皮直接活化制备的电极材料相比,质量比电容和体积比电容分别增加了31.40%和37.36%。  相似文献   

6.
李祥  郑峰  罗援  罗泳梅 《材料导报》2018,32(12):1949-1954
KMnO_4和MnCl_2在140℃反应釜中反应6h并掺杂不同含量的活性炭,经球磨后制备成超级电容器活性炭/MnO2复合电极材料。通过BET测试得出,当活性炭含量为29%(质量分数,下同)时,复合电极材料的比表面积为451m~2/g。XRD结果表明,复合物的物相结构主要为非晶。SEM结果表明,复合电极的形貌为细小环绕微纳米绒球。XPS谱线表明不同活性炭含量的复合物中均含有Mn~(4+)。当扫描速率为50 mV/s时,复合电极的比电容值达365F/g,充放电效率为93%,等效串联电阻值仅为0.87Ω。经3 000次循环后,复合电极中均出现不同程度的晶体相,电极形貌变成颗粒状和块状,但复合粒子的均匀性增强,比电容值仅下降约6%。  相似文献   

7.
以废茶叶的炭化料为前驱体,KOH为活化剂(碱炭比1∶1、2∶1、3∶1),在800℃下活化1h制备双电层电容器用活性炭电极材料。利用扫描电镜、低温N2吸附对活性炭的形貌、孔结构进行表征,采用恒流充放电、循环伏安和交流阻抗等测试方法评价其在3mol/L KOH电解液中的电化学性能。结果表明,3种活性炭比表面积、总孔容和中孔率最高分别达1 900m2/g、0.919 4cm3/g和35.7%;3种活性炭电极材料在0.055 6 A/g电流密度下的比电容分别为202F/g、255F/g、194F/g,电流密度增加到2.780A/g时,电容保持率分别为84.2%、67.1%、86.6%;等效串联电阻仅为0.10~0.12Ω;在碱碳比为2∶1时制备的活性炭电极材料在2.363A/g下比电容为148F/g,经1 000次循环充放电后,其质量比电容为147.7F/g,电容保持率高达99.3%。  相似文献   

8.
张莉宋金岩  邹积岩 《功能材料》2007,38(A04):1308-1311
用醋酸锰和高锰酸钾制备二氧化锰粉末;用氯化钌和氢氧化钠制备水合二氧化钌粉末。以二氧化钌和二氧化锰作为电极材料的活性物质,以活性碳粉末为电极的基础原料制备复合电极,并组装超级电容器单元。用x射线衍射仪和扫描电镜对电极材料进行表征,可得复合电极具有明显的电容特征。在浓度为38%的硫酸电解质溶液中,对复合电极进行电化学性能测试,循环伏安曲线、充放电曲线和交流阻抗特性显示了复合电极材料具有良好的电化学性能。碳,锰复合电极的比容量为128F/g,碳/锰/钌复合电极的比容量为266F/g。当二氧化钌和二氧化锰在电极中质量比各占20%时,更能发挥活性物质的作用,由该电极材料组成的超级电容器具有理想的电容特性。  相似文献   

9.
以丝瓜络作为前驱体,KOH为活化剂,在不同温度下炭化、活化制备活性炭,并将其作为超级电容器电极材料。采用N2吸附及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了炭化温度、碱炭比对活性炭电极材料孔结构和电化学性能的影响。结果表明:丝瓜络经过一步炭化即可制备出电化学性能优异的炭材料,经过KOH活化后比电容明显增加,在碱炭比为2时制备活性炭的比表面积、总孔容分别达到1549m2/g和0.901cm3/g,比电容达到228F/g,是未活化炭化物比电容的2.5倍,是一种理想的电极材料。活性炭作为电极材料,其比表面积存在一个最佳值,孔的容积、大小和形状对电解质离子的储存、扩散有着重要作用,对电化学性能有很大影响。  相似文献   

10.
用质量分数65%的浓硝酸分别浸渍炭化前和炭化后的蚕茧,然后在不同温度条件下进行热处理,得到改性活性炭纤维材料。利用低温氮气吸附-脱附仪、傅里叶变换红外光谱仪、扫描电子显微镜和透射电子显微镜对改性前后活性炭纤维材料的孔结构和电化学性能进行分析表征。用循环伏安、交流阻抗和恒流充放电等测试方法研究了活性炭纤维电极材料的炭化温度和炭化顺序对中孔炭孔结构及电化学性能的影响。结果表明:随着炭化温度的升高,活性炭纤维电极材料比表面积和孔容逐渐增加;炭化温度为600℃时,采用先炭化后吸附方法制备的活性炭纤维电极材料比电容可以达到124.56F/g,比先吸附后炭化制备的样品比电容(82.69F/g)提高了约51%。  相似文献   

11.
纳米碳管与活性炭复合电极电吸附脱盐性能的研究   总被引:1,自引:0,他引:1  
张登松  施利毅  方建慧  代凯 《功能材料》2005,36(8):1245-1247,1250
为考察纳米碳管(CNTs)、活性炭(AC)及其复合电极的电吸附脱盐性能,将其粉末压制成电极,组装成脱盐器,比较电极电吸附脱盐能力和脱盐能耗。结果表明,在活性炭电极中添加纳米碳管有效地降低了电极电阻和脱盐能耗,少量纳米碳管的添加能在一定程度上提高其电极比表面积、孔容以及在盐水中的比电容;当复合电极中纳米碳管的含量为10%时,其电极在盐水中的电吸附比电容达到113.5F/g,其电极脱盐效果最为显著,其脱盐耗能比活性炭电极降低约67%左右。  相似文献   

12.
以纸纤维(PF)为基体,晶须状碳纳米管(WCNT)和活性炭(AC)为功能添加物,采用真空抽滤法制成PF/WCNT/AC三元无金属集流体复合电极。利用扫描电子显微镜(SEM)、X射线衍射(XRD)光谱仪、拉曼(Raman)光谱仪对其进行表征和分析,采用两电极测试体系对组装的超级电容器性能进行测试。结果表明,与涂布法所得的铝箔集流体(Al/WCNT/AC)电极相比,由PF/WCNT/AC三元复合电极组装的超级电容器比电容大幅提高,并展现出良好的充放电性能。在1mV/s的扫描速率下比电容达325F/g,几乎是Al/WCNT/AC超级电容器(108.7F/g)的3倍。PF/WCNT/AC超级电容器在0.4A/g电流密度下的比电容为95F/g,在3.2A/g电流密度下的比能量与比功率分别为36.76 Wh/kg、5.52kW/kg。  相似文献   

13.
A nanostructured TiO2-coated activated carbon (TAC) composite was synthesized by a modified sol-gel reaction and employed it as a negative electrode active material for an asymmetric hybrid capacitor. The structural characterization showed that the TiO2 nano-layer was deposited on the surface of the activated carbon and the TAC composite has a highly mesoporous structure. The evaluation of electrochemical characteristics of the TAC electrode was carried out by galvanostatic charge/discharge cycling tests and electrochemical impedance spectroscopy. The obtained specific capacitance of the TAC composite was 42.87 F/g, which showed by 27.1% higher than that of the activated carbon (AC). The TAC composite also exhibited an excellent cycle performance and kept 95% of initial capacitance over 500 cycles.  相似文献   

14.
采用气相沉积法和后续的电沉积法制备得到自支撑结构的MnOOH-石墨烯(graphene)-泡沫镍(NF)复合电极。使用XRD、SEM、XPS等方法对样品的物相、形貌和价态等进行表征,通过恒流充放电、循环伏安、交流阻抗等方法对电极的电化学性能进行研究。结果表明:该方法可以成功制备得到具有自支撑结构的MnOOH-graphene-NF复合电极,超薄的graphene层均匀覆盖在NF的表面,微米球状的MnOOH纳米片紧密覆盖在graphene的表面。该自支撑复合结构可以直接用作超级电容器电极进行测试,在5 mol/L KOH溶液中表现出了较大的赝电容储存能力。在0.5 A/g的电流密度下,最大比容量可达934 F/g。当电流密度提高为5 A/g时,比容量仍达771 F/g。当电流密度为2 A/g时,循环5000次后的容量保持率高达98%,库伦效率接近100%,表现出了良好的超级电容性能。本实验提供了一种制备自支撑MnOOH-graphene-NF复合电极的新方法,该复合电极有望成为一种潜在的新型超级电容器电极材料。   相似文献   

15.
A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.  相似文献   

16.
Manganese sulfide (MnS) with high specific capacitance and low-cost merits, has been investigated as a potential electroactive material for supercapacitor. However, in practical application, MnS has been suffering from some disadvantageous issues such as insufficient electrical conductivity, serious particle agglomeration as well as huge volume change during continuous charges and discharges, which resulted in a limited specific capacitance, shortened working life and inferior rate performance. Engineering electrode materials with controlled nanostructure and composition is pivotal to improve electrichemical performance of supercapacitors. This paper introduces a facile in situ sulfuration method to fabricate MnS/NSC composite with Mn-hexamethylene tetramine coordination framework as precursor. The results indicated that MnS nanoparticles were highly dispersed and incorporated into nitrogen, sulfur-doped carbon microsheets in MnS/NSC composite. Carbon matrix effectively dispersed and confined the MnS nanoparticles, thus inhibiting aggregation, relieving volume change and retaining structural integrity. Moreover, the 2D conductive carbon matrix reduced the diffusion distance for ions and ensured fast electron delivery. As a result, MnS/NSC electrode delivered a tremendously boosted electrochemical performance for supercapacitor. A large capacitance value about 1881.8F/g was achieved at 1A/g. Even cycling for 3000 loops at 40 A/g, MnS/NSC electrode retained a large capacitance of 404.3F/g. Furthermore, an asymmetric capacitor based on assembly of MnS/NSC composite cathode and activated carbon anode was fabricated. As tested under a current density of 0.1 A/g, it delivered a capacitance of ~ 110.1F/g and achieved an energy density of 12.4 Wh kg?1 along with a power density of 3.03 kW kg?1. These results demonstrate the potential utilization of MnS/NSC composite as electrodes for energy conversion and storage devices and open up a route for material design for future energy storage devices.  相似文献   

17.
方勤  杨邦朝 《功能材料》2005,36(12):1889-1891
以石油焦为原料,运用化学活化法制备了超级电容器用高比表面积中孔活性炭。利用XRD、SEM和BET对实验制备的中孔炭进行了分析和表征。以实验制备的活性炭为超级电容器电极材料,利用恒流充放电测试对其电容特性进行了研究。结果表明,实验研制的活性炭的比表面积为1733m^2/g,中孔含量达到60.6%,在150mA/g的电流密度下其比容达到180F/g,而且基于实验研制的活性炭的超级电容器具有低内阻和良好的功率特性。  相似文献   

18.
采用直流电电化学制备了聚吡咯和聚吡咯/石墨烯薄膜电极,研究发现聚吡咯/石墨烯复合电极表面产生了很多小孔和一些羊角状的结构,这可能是由于在聚合过程中,聚合围绕石墨烯吸附对甲基苯磺酸根离子形成的球状体所致。而这些小孔和羊角状的结构在电极的充放电过程中为内层聚吡咯提供了离子交换的通道。在循环伏安的测试中,当扫描速率达到1000mV/S时,聚吡咯/石墨烯复合电极的容量依然保持在229F/g,而纯的PPy电极的容量仅保持在112F/g。  相似文献   

19.
采用水热法先合成MnFe2O4(MFO), 然后通过与PH3反应制备了磷酸根离子掺杂的MnFe2O4(PMFO), 以提高它的电化学性能。研究结果表明, 磷酸根掺杂不仅增大了MnFe2O4的比表面积, 也增加了材料的电导性。在1 A/g电流密度下, PMFO比容量为750 F/g, 与MFO相比, 比电容提高了近70%, 同时循环稳定性也得到了极大改善。以PMFO为正极、活性碳为负极的非对称超级电容器(ASCs), 在功率密度为2.7 kW/kg时, 能量密度达到168.8 Wh/kg。因此, PMFO是有极大应用前景的超级电容器电极材料。  相似文献   

20.
纳米NiO/C复合电极电化学电容特性的研究   总被引:1,自引:0,他引:1  
为满足高性能电化学电容器发展的需要,采用循环伏安法(CV)和电化学阻抗谱(EIS)研究了纳米NiO/C复合电极在KOH溶液中的电化学电容特性。这种纳米NiO/C复合电极材料是经热解柠檬酸镍凝胶制得的,由大约85%的纳米NiO和15%的纳米C组成,粉体的比表面积为181m^2/g,颗粒粒径〈30nm,微孔直径分布在4~10nm。结果表明,纳米NiO/C复合电极的比电容受KOH浓度和扫描速度的影响,高的电解质浓度和低的扫描速度有助于获得高的比电容。电极的电化学过程研究显示出法拉第反应和双电层特性,因而电极电容由法拉第准电容和双电层电容组成,电极比容量可达116.4F/g。由纳米NiO/C复合电极组成的电容器,其比能量达13.2kJ/kg,比功率达1.6kW/kg,且具有良好的循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号