首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TiAlalloyisacandidatematerialforadvancedaerospaceairframebecauseofitslowdensity ,goodoxida tionresistanceandhighmechanicalstrengthathightem perature.However,itslowertensileductilityatambienttemperatureishinderingitfrombeingwidelyused[1,2 ] .Toimprovetheseme…  相似文献   

2.
The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al- 12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0. 166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr(alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100 ℃/80 h and 100 ℃/48 h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753 MPa and 788 MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3 Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.  相似文献   

3.
The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 °C, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.  相似文献   

4.
The oxidation of the ternary alloy Ni-15Cu-5Al in 1×105 Pa pure oxygen at 700 °C and 800 °C was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with the same Al content in the form of an external NiO layer coupled to the internal oxidation of aluminium. The presence of 15% (mole fraction) Cu cannot modify substantially the values of relevant parameters affecting the transition from the internal to the external oxidation of aluminium. The presence of 5% Al reduces the oxidation rate of the corresponding Ni-Cu alloy during the whole oxidation stages, though 5% Al is still insufficient to form protective external alumina scales. Foundation item: Project (50071058; 50271079) supported by the National Natural Science Foundation of China  相似文献   

5.
Mechanical properties and tribological behavior of a novel cast heat-resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one-sixth and one-fortieth of that of C95500, respectively. The alloy is very suitable for ma-nufacturing heat-resisting and wear-resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.  相似文献   

6.
The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions and morphologies were analyzed by X-ray diffraction(XRD), scanning election microscopy (SEM). The corrosion behaviors of the film were investigated electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests and immersion tests. The results show that the optimum parameters for electrochemical deposition are as follows: pH 10.0, time 30 min, 50 mmol/L Na2CO3 and temperature 25 °C by the designed experiments according to the orthogonal table L(9, 34). The corrosion protection efficiency is dependent on the deposition parameters. The cerium conversion film shows better corrosion protection behavior than chromate conversion film on Mg-Gd-Y-Zr magnesium alloy. Foundation item: Project (5133001E) supported by the Major State Basic Research and Development Program of China  相似文献   

7.
The evolution of microstructure on aging of an (α+β) titanium alloy (Ti-5Al-5Mo-5V-1Cr-1Fe) in the β and (α+β) solution-treated and quenched conditions was investigated. The presence of very fine ω phase was detected by electron diffraction for samples aged below 400 °C. The fine α aggregates are uniformly formed within β grains by nucleating at the ω particles or β/ω interfaces. At higher temperature, the formation of ω phase is avoided and the α lamellae are precipitated at the preferred site of grain boundary and then within the matrix. The highest hardness values are found when the alloys are aged at 450 °C for β condition and 350 °C for (α+β) condition. Foundation item: Project (50634030) supported by the National Natural Science Foundation of China; Project (2007DS04014) supported by the Program of Science and Technology of Shandong Province, China; Project supported by the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University, China  相似文献   

8.
BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons microscopy and energy dispersive X-ray spectrometry. The influence of annealing temperature and annealing time on sheet resistance of the thin films was investigated. The results show that heat treatment, including annealing temperature and time, causes notable change in molar ratio of Pb to Ba, resulting in the variations of sheet resistance. The variation of electrical properties demonstrates that the surface state of the film changes from two-dimensional behavior to three-dimensional behavior with the increase of film thickness. Crack-free BaPbO3 thin films with grain size of 90 nm can be obtained by a rapid thermal annealing at 700 ℃ for 10 min. And the BaPbO3 films with a thickness of 2.5 μm has a sheet resistance of 35 Ω·-1.  相似文献   

9.
The aging feature of Al-Li-Cu-Mg-Zr alloy containing Sc   总被引:14,自引:0,他引:14  
The aging behaviors of Al-1.42% Li-2.41% Cu-0.93% Mg-0.073% Zr-0.17% Sc (mass fraction, the same below) alloy at room temperature, 160 °C, and 160°C after 8% pre-deformation were studied respectively by hardness measurement. The microstructure of the alloy in various aging conditions was observed by TEM. The results show that the main precipitations of the alloy in quenching condition are the particles containing Sc and Zr which have certain coherent relation with the matrix. Addition of Sc in Al-Li-Cu-Mg-Zr alloy will be favorable to promoting precipitation. The particles can serve as preferred nucleation sites for δ′ phases which accelerate the aging hardening rate at initial aging. The main hardening phases of the alloy aged at 160 °C are δ′ and δ′/β′ composite precipitates. The size of the composite precipitates is very small (nanometer size). The composite precipitates will preclude efficiently the formation concentrative slip location and will improve the mechanical properties of the alloy. S′ phase will occur in the alloy aged at 160 °C after 8% pre-deformation. It is found that 8% pre-deformation has no obvious influence on the precipitation of the composite phase. Foundation item: The Key Program of the 9th Five-year Plan of China (No. 95-YS-001) Biography of the first author: TAN Cheng-yu, associate professor, born in 1963, majoring in materials and their suface performances.  相似文献   

10.
1 INTRODUCTIONMembranereactorsrepresentapromisingtech nologyforproductionandprocessinginthepharma ceuticalandfoodindustry .Theincreasingattentionto“natural like” productsandenviron mentalpro cessesmakesthemembranereactorsparticularlyat tractive,becausetheydonotrequirechemicaladdi tives ,areabletoworkundermildconditionsofpH ,temperature,and pressure ,andcanreducethefor mationofby products[1] .Thecatalyticactionofen zymesisextremelyefficientandselectivecomparedwithordinarychemicalcatalys…  相似文献   

11.
The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3 % (mass fraction) Ag accelerates 2519 aluminum alloy's age-hardening, increases its peak hardness and reduces 4 h of peak aged time at 180 ℃. The addition of 0. 3% (mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200 ℃ is 24 MPa and 78 MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.  相似文献   

12.
The effect of homogenization on the hardness, tensile properties, electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied. The results show that during homogenization as-cast studied alloy has obviously hardening effect that is similar to aging hardening behavior in traditional Al alloys. The precipitates are mainly Al3(Sc,Zr) and Al6Mn When homogenization temperature increases the hardness peak value is declined and the time corresponding to hardness peak value is shortened. The electrical conductivity of the alloy monotonously increases with increasing homogenization temperature and time. The decomposition of the supersaturated solid solution containing Sc and Zr which is formed during direct chilling casting and the precipitation of Al3(Sc, Zr) cause hardness increasing. The depletion of the matrix solid solubility decreases the ability of electron scattering in the alloy, resulting in the electrical conductivity increased. Tensile property result at hot rolling state shows that the optimal homogenization treatment processing is holding at 300-350℃ for 6-8 h.  相似文献   

13.
The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co3W3C (M6C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M6C→M12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.  相似文献   

14.
1 IntroductionRare earth-based hydrogenstorage alloys ofAB5typehave beenthe most major electrode material for small-sizeNi/MHbatteries because of their high discharge capacity,superior highrate capability andfavorable ratio of pricetoperformance. But their electrochemical performances be-come worse when the alloys are applied to large-size Ni/MHbatteries of electric vehicles .Thisfact may be due tothe rising of temperature inside the large batteries causedbythe high electric current of char…  相似文献   

15.
TiAl/Ti2AlC composites were prepared by in-situ hot pressing of TilAl/C powders mixtures and sintered at different temperatures were investigated by X- ray diffraction ( XRD ) of samples. The reaction procedure of Ti-Al-C system could be divided into three stnges. Below 900℃ , Ti reacts with Al to form TiAl intermetallics ; above 900 ℃ , C reacts with remain Ti to form TiC triggered by the exothermal reaction of Ti and Al ; TiAl reacts with TiC to produce dense TiAl/Ti2AlC compasites.In the holding stage, ternary Ti2AlC develops to layered polycrystal and composites pyknosis in the meanwhile. The mechanism of synthesis and microstructure was especially discussed.  相似文献   

16.
Powder of Ti-46at%Al alloy was synthesized through mechanical activation(MA) and then sintered and concurrently consolidated in a short sintering time of 900 s by using a spark plasma sintering(SPS) process. The XRD and SEM profiles show that the microstructures of TiAl alloys contained γ TiAl and small amount α-2 Ti3Al phase, whose amount can be controlled by the sintering temperature. The compacts retained the original fine-grained fully densified bodies by avoiding an excessively high sintering temperature. The alloys sintered at higher temperature with this process showed a coarser microstructure. So it is possible to produce dense nanostructured TiAl alloys by mechanically activated spark plasma sintering (MASPS) within a very short period of time.  相似文献   

17.
RRE-Mg66 alloy with a composition of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6Zr was prepared by combinatorial processes of rapid solidification, reciprocating extrusion and extrusion. Microstructure was evaluated on SEM and TEM. The average grain size of the alloy is 0.7 ??m, the size of the second phase at grain boundary is 0.15 ??m, and the size of the intragranular precipitates in round shape is less than 20 nm. Superplastic behavior of the material was investigated in a temperature range of 150 to 250 °C and initial strain rate range of 3.3×10?4 to 3.3×10?2 s?1 in air. The highest elongation of 270% was obtained at 250 °C and 3.3× 10?3 s?1. High-strain-rate superplasticity and low-temperature superplasticity were achieved. The superplasticity results from intragranular sliding (IGS) at temperatures from 170 to < 200 °C and grain boundaries sliding (GBS) at 250 °C. At 200 °C a combination of IGS and GBS contributes to the superplastic flow.  相似文献   

18.
4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590 °C, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200 °C to 1300 °C, the relative density increases from 89.86% to 95.33%, and the resistivity at 960 °C decreases from 0.11 Ω · cm to 0.03 Ω · cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960 °C are 90.23% and 0.04 Ω · cm respectively for the cermet samples sintered at 1200 °C for 2 h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders. Foundation item: Project (G1999064903) supported by the National Key Fundamental Research and Development Program of China; project(2001AA335013) supported by the National High Technology Research and Development Program of China; project (50204014) supported by the National Natural Science Foundation of China  相似文献   

19.
TiAlbasealloyshavebeingconsideredaspromisinghightemperaturestructuralmaterials.Beingstudiedfornearly 2 0years,thefundamentalofTiAlbasealloyshavebeenunderstood(moreclearly) ,andtheirmechanicalproperties ,espe ciallytheroomtemperatureductility ,havebeengreatl…  相似文献   

20.
In order to improve the process of co-reduction of oxide powder, a new mechano-thermal process was designed to produce high-dispersed W-Cu composite powder by high temperature oxidation, short time high-energy milling and reduction at lower temperature. The particle size, oxygen content and their sintering abilities of W-Cu composite powder in different conditions were analyzed. The results show that after a quick milling of the oxide powder for about 3-10 h, the reduction temperature of the W-Cu oxide powder can be lowered to about 650 ℃ from 700-750 ℃ owning to the lowering of particle size of the oxide powder. The average particle size of W-Cu powder after reduction at 650 ℃ is about 0. 5μm smaller than that reduced at 750 ℃. After sintering at 1 200℃ for 1 h in hydrogen atmosphere, the relative density and thermal conductivity of final products (W-20Cu) can attain 99. 5% and 210 W ·m-1· K-1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号