首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
由于施加高栅极工作电压,使得器件容易发生重离子辐射损伤效应,其中,重大的重离子辐射损伤效应是单粒子栅穿效应(SEGR)和单粒子烧毁效应(SEB)。本文介绍了抗辐射加固高压SOI NMOS器件的单粒子烧毁效应。基于抗辐射加固版图和p型离子注入工艺,对高压器件进行抗辐射加固,提高器件的抗单粒子烧毁能力,并根据电路中器件的电特性规范,设计和选择关键器件参数。通过仿真和实验结果研究了单粒子烧毁效应。实验结果表明,抗辐射加固器件在单粒子辐照情况下,实现了24 V的高漏极工作电压,线性能量传输(LET)阈值为835 MeV·cm2/mg。  相似文献   

2.
通过MEDICI的二维器件模拟,提出不仅在正栅下的体区受到单粒子入射后释放电荷,漏极也可以在受到单粒子入射后释放干扰电荷。对SOI SRAM单元中器件的漏极掺杂浓度进行优化,可以减小漏极受到单粒子入射所释放的电荷。改进了SOI SRAM的单元结构,可以提高SRAM抗单粒子翻转(SEU)的能力。  相似文献   

3.
利用252Cf源和60Coγ射线源对典型VDMOSFET进行单粒子效应和电离总剂量效应模拟试验,给出典型VDMOSFET的单粒子烧毁(SEB)、单粒子栅穿(SEGR)效应测量结果以及不同偏置条件下漏源击穿电压随辐照剂量的变化情况。结果表明,VDMOSFET对SEB和SEGR效应以及VDMOSFET漏源击穿电压对电离总剂量效应比较敏感,空间应用时需重点考虑VDMOSFET的抗SEB和SEGR能力;考核VDMOSFET的抗电离总剂量效应能力时对阈值电压和击穿电压等敏感参数应重点关注。  相似文献   

4.
随着SOI器件尺寸不断缩小,单粒子效应敏感区域相对有源区比例增加,对于其敏感区域的机理研究显得越来越重要.本文利用软件对SOI MOSFET的敏感区域进行了3-D空间模拟,阐述了敏感区域的机理:截止NMOSFET的反偏漏结迫使单粒子轰击产生的电子空穴对分离,漏极迅速收集电子产生瞬时电流,空穴向体区漂移并在体区堆积,使体电势升高导致寄生三极管开启产生较长时间的放大电流.良好的体接触能够快速抽走堆积的空穴,抑制体电位的升高,降低漏极收集电流.  相似文献   

5.
利用脉冲激光模拟试验装置对IDT公司0.13 μm工艺IDT71V416S SRAM的单粒子效应进行了试验研究。在3.3 V正常工作电压下,试验测量了单粒子翻转阈值和截面、单粒子闩锁阈值和闩锁电流及其与写入数据和工作状态的关系。单粒子翻转试验研究表明,该器件对翻转极敏感,测得的翻转阈值与重离子、质子试验结果符合较好;该器件对多位翻转较敏感,其中2位翻转占绝大部分且其所占比例随辐照激光能量增加而增大,这与重离子试验结果也一致。单粒子闩锁试验分析了闩锁效应的区域性特点,发现了器件闩锁电流呈微小增大的现象,即表现出单粒子微闩锁效应,分析了这种现象对传统的抗闩锁电路设计可能造成的影响。  相似文献   

6.
功率MOS、IGBT单粒子烧毁、栅穿效应模拟实验研究   总被引:2,自引:0,他引:2  
建立了利用^252Gf裂片源,模拟空间重离子引起的单粒子烧毁、栅穿效应的实验方法和测试装置,开展了功率MOS器件、IGBT的单粒子烧毁、栅穿效应的模拟试验研究,给出了被试器件单粒子烧毁、栅穿效应的损伤阈值,以及随器件偏置的变化规律。  相似文献   

7.
建立了2 5 2 Cf裂片源模拟空间重离子的单粒子烧毁 (SEB)和单粒子栅穿 (SEGR)效应的实验方法和测试装置 ,并利用该装置进行了功率MOS场效应晶体管的SEB、SEGR效应研究 ,给出了被测试器件SEB、SEGR效应的损伤阈值。结果表明 ,该测试系统和实验方法是可行、可靠的。  相似文献   

8.
SOI NMOSFET单粒子效应的3-D模拟   总被引:2,自引:1,他引:1  
随着SOI器件尺寸不断缩小,单粒子效应敏感区域相对有源区比例增加,对于其敏感区域的机理研究显得越来越重要。本文利用软件对SOI MOSFET的敏感区域进行了3-D空间模拟,阐述了敏感区域的机理:截止NMOSFET的反偏漏结迫使单粒子轰击产生的电子空穴对分离,漏极迅速收集电子产生瞬时电流,空穴向体区漂移并在体区堆积,使体电势升高导致寄生三极管开启产生较长时间的放大电流。良好的体接触能够快速抽走堆积的空穴,抑制体电位的升高,降低漏极收集电流。  相似文献   

9.
为检验北京HI-13串列加速器单粒子效应(SEE)实验能力与数据测量的可靠性,利用束流参数校核系统——欧空局单粒子监督器进行了单粒子效应校核实验。实验使用C、F、Cl、Cu 4种离子辐照单粒子监督器,通过改变入射角度获得了有效LET值在1.8~67.4 MeV·cm~2·mg~(-1)之间的单粒子翻转(SEU)截面数据。实验结果与比利时HIF、芬兰RADEF装置上测得的截面数据一致性较好,证实了北京HI-13串列加速器单粒子效应实验束流参数测量的准确性及截面数据测试的可靠性。  相似文献   

10.
用^252Cf裂片源研究单粒子烧毁和栅穿效应的方法   总被引:3,自引:0,他引:3  
建立了^252Cf裂片源模拟空间重离子的单粒子烧毁和单粒子栅穿效应的实验方法和测试装置,并利用该装置进行了功率MOS场效应晶体管的SEB、SEGR效应研究,给出了被测试器件SEB、SEGR效应的损伤阈值。结果表明,该测试系统和实验方法是可行、可靠的。  相似文献   

11.
高密度CMOS工艺SRAM对单粒子锁定极端敏感的特性使其在空间应用时必须采取相应的防护策略。对于抗辐照能力较弱的CTOS,电路级防护成为提高系统可靠性的一项重要内容。利用激光单粒子效应试验装置,对CYPRESS公司的CY62167DV30LL型SRAM开展了一系列单粒子锁定效应试验。通过对试验结果进行线性拟合,计算出该款SRAM维持电压为1?5?1?6 V,维持电流为9?9?11?2 mA。根据维持电流、维持电压、工作电流、工作电压,对能否采用电路级防护做出判断。提出了电源限流和分压电阻两种电路级防护方法,并定量计算出电源限流取值和分压电阻取值范围。以往文献中电阻只是作为锁定被触发后限流的一种手段,并不能阻止器件发生锁定,本研究发现在满足一定条件下分压电阻可达到退出锁定的目的。两种防护方法均通过脉冲激光试验进行了验证。  相似文献   

12.
It was found that the radiation-induced leakage current across the gate-to-substrate and the drain-to-substrate semiconductor junction dominates the behavior of MOS field effect transistors for small gate impedances. The smaller radiation-induced gate leakage current consists, to a large extent, of components due to secondary emission and air ionization effects. For large gate impedances, the gate leakage current can be important because of a modulation of the gate bias. The voltage dependence of this leakage current is also discussed. Based upon these findings and the physical structure of the device, an equivalent circuit model has been developed to predict the behavior of devices of this type in a transient radiation environment. The model consists of a standard nonradiation equivalent circuit modified by the inclusion of elements to describe the substrate junctions and the addition of current generators in parallel with the gate-to-substrate and the drain-to-substrate capacitances to account for transient radiation effects. A voltage dependent gate-to-channel current generator can also be included to describe the gate leakage current. The utility of the model was confirmed by comparing the predicted behavior of radiation-induced responses with responses observed at a flash X-ray. The equivalent circuit model developed is suitable for use with existing automated circuit prediction techniques and contains parameters measurable with standard instrumentation procedures.  相似文献   

13.
介绍了一种多路高压测试系统,并简要介绍了电路结构和电路设计、工作原理和技术指标。该仪器主要用于实验室和野外直流单路高压和多路高压系统电压值的测试,特别是对探测器偏压的测试。该仪器可以测量的额定电压最大值为6kV,电流值为0.1-10mA。仪器结构简单、集成度高、交直流供电、体积小、携带方便。  相似文献   

14.
A radiation-tolerant, high-speed, bulk CMOS VLSI circuit design, utilizing a new NMOS structure, has been investigated, based on ?-ray irradiation experimental results for 2?m shift registers. By utilizing 60-bit clocked gate and transfer gate static shift register circuits, the usefulness of radiation-hard NMOS structure and circuit design parameter optimization has been confirmed experimentally, showing 50 MHz operation CMOS circuits at 5 V supply voltage after 1 × 105 rads (Si) irradiation. The limitations of dynamic circuits in radiation-tolerant circuit designs have also been shown, using 120-bit dynamic shift register circuits. Based on the above results, radiation-tolerant, high-performance, bulk CMOS VLSI circuit designs are discussed.  相似文献   

15.
Microelectronic power converters such as buck and boost converter are required to be tolerant to radiations including electron radiation.This paper examines electron radiation effects on the Ⅰ-V characteristics of VDMOSFET and its corresponding effects in buck converter.Analysis of the electrical characteristics shows that after irradiation the threshold voltage and drain current for all VDMOSFETs degraded more than two orders of magnitude.The impact of this electrical degradation has been investigated in an application of typical buck converter circuit.The buck converter with n-channel switching transistor shows that after irradiation its output voltage increased with the drain current in the n-channel ZVN4424A VDMOSFET,while the buck converter with p-channel switching transistor shows its output voltage decreased with the drain current in the p-channel ZVP4424A VDMOSFET after irradiation.  相似文献   

16.
Microelectronic power converters such as buck and boost converter are required to be tolerant to radiations including electron radiation. This paper examines electron radiation effects on the Ⅰ-Ⅴ characteristics of VDMOSFET and its corresponding effects in buck converter. Analysis of the electrical characteristics shows that after irradiation the threshold voltage and drain current for all VDMOSFETs degraded more than two orders of magnitude. The impact of this electrical degradation has been investigated in an application of typical buck converter circuit. The buck converter with n-channel switching transistor shows that after irradiation its output voltage increased with the drain current in the n-channel ZVN4424 A VDMOSFET, while the buck converter with p-channel switching transistor shows its output voltage decreased with the drain current in the p-channel ZVP4424 A VDMOSFET after irradiation.  相似文献   

17.
The total ionizing radiation effects of n-channel enhancement mode silicon on sapphire MISFET's have been characterized up to a total dose of 107 rads (Si). The drain current versus drain voltage characteristics of the n-channel devices showing the "kink" effect were measured over a range of gate voltages and as a function of ionizing radiation. The effect of the ionizing radiation on the "kink" phenomenon was determined and the implications of this effect on the radiation hardness of n-channel MISFET's is discussed. The results show that the equivalent threshold voltage at the operating drain voltage must be defined and used in determining the radiation hardness of the n-channel device. The radiation induced back channel leakage currents of n-channel MISFET's are characterized in terms of device geometry and the amount of radiation induced trapped charge in the sapphire substrate. Results showing the leakage current plotted as a function of drain voltage suggest that the "kink" effect and related phenomena also enhance the radiation induced leakage current effects and lead to substantially increased values of leakage current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号