首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha 2-Adrenoceptors are known to inhibit voltage-dependent Ca2+ channels located at neuronal cell bodies; the present study investigated whether this or alternative mechanisms, possibly downstream of Ca2+ entry, underlie the presynaptic alpha 2-adrenergic modulation of transmitter release from chick sympathetic neurons. Using chick sympathetic neurons, overflow of previously incorporated [3H]noradrenaline was elicited in the presence of extracellular Ca2+ by electrical pulses, 25 mM K+ or 10 microM nicotine, or by adding Ca2+ to otherwise Ca(2+)-free medium when cells had been made permeable by the calcium ionophore A23187 or by alpha-latrotoxin. Pretreatment of neurons with the N-type Ca2+ channel blocker omega-conotoxin GVIA and application of the alpha 2-adrenergic agonist UK 14304 reduced the overflow elicited by electrical pulses, K+ or nicotine, but not the overflow caused by Ca2+ after permeabilization with alpha-latrotoxin or A23187. In contrast, the L-type Ca2+ channel blocker nitrendipine reduced the overflow due to K+ and nicotine, but not the overflow following electrical stimulation or alpha-latrotoxin- and A23187-permeabilization. The inhibition of electrically evoked overflow by UK 14304 persisted in the presence of nitrendipine and the L-type Ca2+ channel agonist BayK 8644, which per se enhanced overflow. In omega-conotoxin GVIA-treated cultures, electrically evoked overflow was also enhanced by BayK 8644 and almost reached the value obtained in untreated neurons. However, UK 14304 lost its effect under these conditions. Whole-cell recordings of voltage-activated Ca2+ currents corroborated these results: UK 14304 inhibited Ca2+ currents by 33%, nitrendipine caused a 7% reduction, and BayK 8644 increased the currents by 30%. Moreover, the dihydropyridines failed to abolish the inhibition by UK 14304, but pretreatment with omega-conotoxin GVIA, which reduced mean amplitude from 0.95 to 0.23 nA, entirely prevented alpha 2-adrenergic effects. Our results indicate that the alpha 2-autoreceptor-mediated modulation of noradrenaline release from chick sympathetic neurons relies exclusively on the inhibition of omega-conotoxin GVIA-sensitive N-type Ca2+ channels. Mechanisms downstream of these channels and voltage-sensitive Ca2+ channels other than N-type appear not to be important.  相似文献   

2.
Release of acetylcholine (ACh) from the presynaptic terminals in skate electric organ was tested for its sensitivity to calcium channel antagonists. A pharmacological profile was established by measuring inhibition of K(+)-stimulated release of [3H]ACh from prelabelled tissue slices. Peptide antagonists of N-type (omega-conotoxins GVIA and MVIIA) and P-type (omega-agatoxin-IVA) channels had no effect, whereas both omega-conotoxins MVIIC and SVIB produced concentration-dependent inhibition and could completely block ACh release. omega-Conotoxin GVIA and omega-agatoxin IVA did not attenuate the block by omega-conotoxin MVIIC. The inorganic ions, Cd2+ and Ni2+, also produced a full inhibition of release (Cd2+ > > Ni2+) and Gd3+ a partial one. Drugs targeting L-type channels (diltiazem, nifedipine and verapamil) at low microM concentrations and a synthetic analogue of the polyamine toxin from funnel web spider venom (sFTX) at 1 mM were all non-inhibitory. Inhibition by omega-conotoxins MVIIC (IC50 25 nM) and SVIB (IC50 500 nM) was reversible and modulated by external concentrations of Ca2+. Inhibitory potency was increased by lowering and decreased by elevating external Ca2+. This "antagonistic" effect of Ca2+ was also seen with Cd2+ inhibition. The inhibitory potency of omega-conotoxin MVIIC was unaffected by predepolarisation. End plate potentials generated by release of endogenous ACh in electrically-stimulated slices were also reversibly blocked by Cd2+ and omega-conotoxins MVIIC and SVIB but were unaffected by omega-conotoxin GVIA and omega-agatoxin IVA. It is concluded that ACh release in skate electric organ depends on presynaptic calcium channels which have different pharmacological properties from established sub-types.  相似文献   

3.
The whole cell variant of the patch clamp technique was used to investigate the actions of two novel insect peptides on high voltage-activated Ca2+ currents in cultured dorsal root ganglion (DRG) neurones. The insect peptides (PMP-D2 and PMP-C) were isolated originally from insect brains and fat bodies, and have been found to have similar three-dimensional structures to the N-type Ca2+ channel inhibitor omega-conotoxin GVIA (omega-CgTx GVIA). High voltage-activated Ca2+ currents were activated from a holding potential of -90 mV by depolarizing step commands to 0 mV. Extracellular application of synthetic PMP-D2 or PMP-C (1 microM) attenuated high voltage-activated Ca2+ currents. The effects of PMP-C were strongly dependent on the frequency of current activation, but inhibition was apparent and reached a steady state after 20 steps when currents were evoked for 30 msec at 0.1 Hz. The actions of the two insect peptides overlapped both with each other and with omega-CgTx GVIA, suggesting that N-type Ca2+ current was predominantly sensitive to these peptides. Low voltage-activated T-type current and 1,4-dihydropyridine sensitive L-type Ca2+ currents were insensitive to 1 microM PMP-D2 and PMP-C, which indicates a degree of selectivity. The presence of a fucose group on PMP-C abolished the ability of this peptide to attenuate high voltage-activated Ca2+ currents, which may reflect a mechanism by which peptide function could be regulated in insects. The electrophysiological data are supported by studies on 45Ca2+ influx into rat cerebrocortical synaptosomes. Both PMP-D2 (10 microM), PMP-C (10 microM) and omega-CgTx GVIA (1 microM) attenuated a proportion of 45Ca2+ influx into the synaptosomes, but additive effects of these peptides were not observed. We conclude that these naturally occurring peptides obtained from invertebrate preparations have inhibitory effects on N-type Ca2+ channels. Although the peptides have related three-dimensional structures, they have distinct amino acid sequences and appear to have different mechanisms of action to produce inhibition of mammalian neuronal high voltage-activated Ca2+ channels.  相似文献   

4.
5.
The stimulatory effect of thyrotropin-releasing hormone (TRH) on alpha-melanocyte stimulating hormone (MSH) secretion from the frog pars intermedia is mediated through the phospholipase C (PLC) pathway but requires extracellular Ca2+. The aim of the present study was to investigate the respective contribution of extracellular and intracellular Ca2+ in the action of TRH on cytosolic calcium concentration ([Ca2+]i) and alpha-MSH release. In normal conditions, TRH (10(-7) M; 5 s) evoked two types of Ca2+ responses: in 63% of the cells, TRH caused a sustained and biphasic increase in [Ca2+]i while in 37% of the cells, TRH only induced a transient response. In the presence of EGTA or Ni2+, the stimulatory effect of TRH on [Ca2+]i and alpha-MSH secretion was totally suppressed. Nifedipine (10(-6) M) reduced by approximately 50% the amplitude of the two types of Ca2+ responses whereas omega-conotoxin GVIA (10(-7) M) suppressed the plateau-phase of the sustained response indicating that the activation of L-type Ca2+-channels (LCC) is required for initiation of the Ca2+ response while N-type Ca2+-channels (NCC) are involved in the second phase of the response. Paradoxically, neither nifedipine nor omega-conotoxin GVIA had any effect on TRH-induced alpha-MSH secretion. The PLC inhibitor U-73122 (10(-6) M) significantly reduced the transient increase in [Ca2+]i and totally suppressed the sustained phase of the Ca2+ response but had no effect on TRH-induced alpha-MSH secretion. The stimulatory effect of TRH on PLC activity was not effected by nifedipine and omega-conotoxin GVIA but was abolished in Ca2+-free medium. Ryanodine had no effect on the TRH-induced stimulation of [Ca2+]i and alpha-MSH secretion. Concomitant administration of nifedipine/omega-conotoxin GVIA or U-73122/omega-conotoxin GVIA markedly reduced the response to TRH but did not affect TRH-evoked alpha-MSH release. In contrast, concomitant administration of U-73122 and nifedipine significantly reduced the effect of TRH on both [Ca2+]i and alpha-MSH release. Taken together, these data indicate that, in melanotrope cells, activation of TRH receptors induces an initial Ca2+ influx through nifedipine- and omega-conotoxin-insensitive, Ni2+-sensitive Ca2+-channels which subsequently activates LCC and causes Ca2+ mobilization from intracellular pools by enhancing PLC activity. Activation of the PLC causes Ca2+ entry through NCC which is responsible for the plateau-phase of sustained Ca2+ response. Although nifedipine and U-73122, separately used, were devoid of effect on secretory response, Ca2+ entry through LCC and mobilization of intracellular Ca2+ are both involved in TRH-evoked alpha-MSH release because only one source of Ca2+ is sufficient for inducing maximal hormone release. In contrast, the Ca2+ influx through NCC does not contribute to TRH-induced alpha-MSH secretion.  相似文献   

6.
With use of the whole cell patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide (oxo-M) on voltage-activated Ca2+ channel currents were investigated in acutely dissociated adult rat intracardiac neurons. In all tested neurons oxo-M reversibly inhibited the peak Ba2+ current. Inhibition of the peak Ba2+ current by oxo-M was associated with slowing of activation kinetics and was concentration dependent. The concentration of oxo-M necessary to produce a half-maximal inhibition of current and the maximal inhibition were 40.8 nM and 75.9%, respectively. Inhibitory effect of oxo-M was completely abolished by atropine. Among different muscarinic receptor antagonists, methoctramine (100 and 300 nM) significantly antagonized the current inhibition by oxo-M, with a negative logarithm of dissociation constant of 8.3 in adult rat intracardiac neurons. Internal dialysis of neurons with guanosine 5'-(thio)triphosphate (GTPgammaS, 0.5 mM) could mimic the muscarinic inhibition of the peak Ba2+ current and significantly occlude inhibitory effects of oxo-M. In addition, the internal dialysis of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS, 2 mM) also significantly reduced the muscarinic inhibition of the peak Ba2+ current by oxo-M. Inhibitory effects of oxo-M were significantly abolished by pertussis toxin (PTX, 200 and 400 ng/ml) but not by cholera toxin (400 ng/ml). Furthermore, the bath application of N-ethylmaleimide (50 microM) significantly reduced the inhibition of the peak Ba2+ current by oxo-M. The oxo-M shifted the activation curve derived from measurments of tail currents toward more positive potentials. A strong conditioning prepulse to +100 mV significantly relieved the muscarinic inhibition of peak Ba2+ currents by oxo-M and the GTPgammaS-induced current inhibition. In a series of experiments, changes in intracellular concentration of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid and protein kinase activities failed to mimic or occlude the current inhibition by oxo-M. The dihydropyridine antagonist nifedipine (10 microM) was not able to occlude any of the inhibitory effects of oxo-M, and oxo-M (3 microM) failed to reduce the slow tail currents induced by the L-type agonist methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176; 2 microM). However, omega-conotoxin (omega-CgTX) GVIA (1 microM) significantly occluded the muscarinic inhibition of the Ba2+ currents. In the presence of omega-CgTX GVIA (1 microM) and nifedipine (10 microM), oxo-M could further inhibit approximately 20% of the total Ca2+ current. After complete removal of N-, Q-, and L-type currents with use of omega-CgTX GVIA, omega-agatoxin IVA, and nifedipine, 70% of the R-type current (approximately 6-7% of the total current) was inhibited by oxo-M (3 microM). In conclusion, the M2 muscarinic receptor activation selectively inhibits N-, Q-, and R-type Ca2+ channel currents, sparing L-type Ca2+ channel currents mainly via a PTX- and voltage-sensitive pathway in adult rat intracardiac neurons.  相似文献   

7.
CHEB [5-(2-cyclohexylidene-ethyl)-5-ethyl barbituric acid] is a potent convulsant barbiturate that causes direct neuronal excitation by an unknown mechanism. We have analyzed the effects of CHEB on the release of endogenous glutamate from rat cerebrocortical synaptosomes using an on-line enzyme-coupled fluorimetric assay. CHEB evoked spontaneous Ca(2+)-dependent glutamate release with an EC50 = 14.2 microM and an Emax = 3.2 mumol/min/mg. The non-convulsant barbiturates pentobarbital and phenobarbital evoked significantly less glutamate release at high concentrations. CHEB (30 microM) increased intrasynaptosomal [Ca2+] by 58 +/- 4 nM (p < 0.01; n = 4) above baseline compared to an increase of 5 +/- 4 nM (NS; n = 4) produced by pentobarbital (30 microM). CHEB-evoked glutamate release was inhibited by pentobarbital, phenobarbital, EGTA, CoCl2/CdCl2 and flunarizine, but not by local anesthetics, tetrodotoxin, nitrendipine or omega-conotoxin GVIA. These results demonstrate that CHEB acts as a potent and effective secretogogue for glutamate by a pre-synaptic mechanism that does not require activation of Na+ channels or of L-type or N-type Ca2+ channels. Stimulation of spontaneous glutamate release may contribute to the convulsant properties of CHEB.  相似文献   

8.
9.
This study was undertaken to determine the effect of the immunosuppressant cyclosporin A on neurotransmitter release from non-adrenergic, non-cholinergic nerves (tachykininergic nerves) in the rabbit iris sphincter muscle. Cumulative application of cyclosporin A (0.1 to 10 microM) caused a slow onset of contraction in a concentration-dependent manner. Both FK888 (1 microM) and capsaicin (10 microM), a substance P receptor antagonist and a substance P-depleting agent, respectively, inhibited the contractile effect of cyclosporin A, whereas atropine (1 microM) had no effect. Both cyclosporin A and capsaicin (10 microM) stimulated the release of substance P-like immunoreactivity in the iris. Neither the sodium channel blocker tetrodotoxin (1 microM), the N-type voltage-dependent Ca2+ channel blocker omega-conotoxin GVIA (1 microM) nor the P-type channel blocker omega-agatoxin IVA (0.2 microM) affected cyclosporin A (1 microM)-induced contraction. In contrast, the L-type Ca2+ channel blocker nicardipine (10 microM) inhibited this contractile effect. These results suggest that cyclosporin A stimulates substance P-like tachykinin release by activating L-type voltage-dependent Ca2+ channels, resulting in contraction of the rabbit iris sphincter muscle.  相似文献   

10.
Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage-activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between approximately 80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.  相似文献   

11.
A "reduced retina" preparation, consisting of the photoreceptor layer attached to the pigment epithelium in the eyecup, was used to study the pharmacology of the calcium channels controlling glutamate release by photoreceptors in Xenopus. Glutamate release was evoked either by dark adaptation or by superfusion with elevated (20 mM) potassium medium. Both darkness- and potassium-induced release were blocked by cadmium (200 microM). The N-type calcium channel blocker, omega-conotoxin GVIA (500 nM), the P-type calcium channel blocker, omega-agatoxin IVA (20 nM), and the P- and Q-type channel blocker omega-conotoxin MVIIC (1 microM) had no effect on glutamate release. In contrast, the dihydropyridines, nifedipine (10 microM) and nitrendipine (10 microM), which affect L-type calcium channels, blocked both darkness- and potassium-induced release. Bay K 8644 (10 microM), which promotes the open state of L-type calcium channels, enhanced glutamate release. These results indicate that photoreceptor glutamate release is controlled mainly by dihydropyridine-sensitive calcium channels. A dependence of glutamate release on L-type calcium channels also has been reported for depolarizing bipolar cells of a fish retina. Thus, it appears that non-inactivating L-type calcium channels are appropriate to mediate transmitter release in neurons whose physiological responses are sustained, graded potentials.  相似文献   

12.
The effects of the adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA), on both the increase in intracellular free Ca2+ concentration ([Ca2+]i) and on the release of endogenous glutamate in rat hippocampal synaptosomes were studied. The inhibitory effect of CPA on the increase in [Ca2+]i stimulated with 4-aminopyridine was neutralized by the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The inhibitory effect of CPA was greater in synaptosomes from the CA1 subregion than in whole hippocampal synaptosomes. The inhibitory effects of both CPA and of the Ca2+ channel blockers, omega-conotoxin GVIA, omega-conotoxin MVIIC or omega-conotoxin GVIA plus omega-conotoxin MVIIC, were greater than those caused by the Ca2+ channel blockers. The release of endogenous glutamate was inhibited by 41% by CPA. The inhibition observed when CPA and omega-conotoxin GVIA or CPA and omega-conotoxin MVIIC were present was also greater than the inhibition by the Ca2+ channel blockers alone. The presence of both omega-conotoxin GVIA and omega-conotoxin MVIIC did not completely inhibit the release of glutamate, and CPA significantly enhanced this inhibition. The membrane potential and the accumulation of [3H]tetraphenylphosphonium of polarized or depolarized synaptosomes was not affected by CPA, suggesting that adenosine did not increase potassium conductances. The present results suggest that, in hippocampal glutamatergic nerve terminals, adenosine A1 receptor activation partly inhibits P/Q- and other non-identified types of Ca2+ channels.  相似文献   

13.
In the present work we investigated the mechanisms controlling the release of acetylcholine (ACh) and of gamma-aminobutyric acid (GABA) from cultures of amacrine-like neurons, containing a subpopulation of cells which are simultaneously GABAergic and cholinergic. We found that 81.2 +/- 2.8% of the cells present in the culture were stained immunocytochemically with an antibody against choline acetyltransferase, and 38.5 +/- 4.8% of the cells were stained with an antibody against GABA. Most of the cells containing GABA (87.0 +/- 2.9%) were cholinergic. The release of acetylcholine and GABA was mostly Ca2+-dependent, although a significant release of [3H]GABA occurred by reversal of its transporter. Potassium evoked the Ca2+-dependent release of [3H]GABA and [3H]acetylcholine, with EC50 of 31.0 +/- 1.0 mm and 21.6 +/- 1.1 mm, respectively. The Ca2+-dependent release of [3H]acetylcholine was significantly inhibited by 1 micrometer tetrodotoxin and by low (30 nm) omega-conotoxin GVIA (omega-CgTx GVIA) concentrations, or by high (300 nm) nitrendipine (Nit) concentrations. On the contrary, the release of [14C]GABA was reduced by 30 nm nitrendipine, or by 500 nm omega-CgTx GVIA, but not by this toxin at 30 nm. The release of either transmitters was unaffected by 200 nm omega-Agatoxin IVA (omega-Aga IVA), a toxin that blocks P/Q-type voltage-sensitive Ca2+ channels (VSCC). The results show that Ca2+-influx through omega-CgTx GVIA-sensitive N-type VSCC and through Nit-sensitive L-type VSCC induce the release of ACh and GABA. However, the significant differences observed regarding the Ca2+ channels involved in the release of each neurotransmitter suggest that in amacrine-like neurons containing simultaneously GABA and acetylcholine the two neurotransmitters may be released in distinct regions of the cells, endowed with different populations of VSCC.  相似文献   

14.
The present study was undertaken to elucidate pathophysiological changes in the cortical presynaptic function, K(+)-stimulated calcium influx, noradrenaline release and noradrenaline uptake, on the 1st and 3rd days after microsphere embolism in rats. Voltage-dependent calcium channels were characterized pharmacologically using three types of calcium channel blockers, L-type (nifedipine and diltiazem), N-type (omega-conotoxin GVIA), and P-type channel (omega-agatoxin IVA) blockers. K(+)-stimulated calcium influx of the normal rat synaptosome was inhibited by 100 nM omega-agatoxin IVA, but not by 10 microM nifedipine, 10 microM diltiazem and 100 nM omega-conotoxin GVIA. Calcium influx of the cortical nerve terminals of the right hemisphere was decreased on the 1st and 3rd days after the embolism. Noradrenaline release and uptake were also decreased on the 1st and 3rd days after the embolism. However, the percent release of noradrenaline was not altered. The results suggest that P-type channels are predominant in the cerebrocortical nerve terminals in rats and that calcium influx, noradrenaline release and uptake in the cerebrocortical nerve terminals are decreased by microsphere embolism. The decrease in noradrenaline release may be mainly due to a reduction in the activity of noradrenaline uptake in cerebrocortical nerve terminals of the microsphere-embolized rat.  相似文献   

15.
Modulation of high-voltage-activated Ca2+ channels by muscarinic receptor agonists was investigated in isolated parasympathetic neurons of neonatal rat intracardiac ganglia using the amphotericin B perforated-patch whole cell recording configuration of the patch-clamp technique. Focal application of the muscarinic agonists acetylcholine (ACh), muscarine, and oxotremorine-M to the voltage-clamped soma membrane reversibly depressed peak Ca2+ channel current amplitude. The dose-response relationship obtained for ACh-induced inhibition of Ba2+ current (IBa) exhibited a half-maximal inhibition at 6 nM. Maximal inhibition of IBa amplitude obtained with 100 microM ACh was approximately 75% compared with control at +10 mV. Muscarinic agonist-induced attenuation of Ca2+ channel currents was inhibited by the muscarinic receptor antagonists pirenzepine (/=30% at +90 mV in the presence of ACh, indicating a voltage-independent component to the muscarinic receptor-mediated inhibition. Both dihydropyridine- and omega-conotoxin GVIA-sensitive and -insensitive Ca2+ channels were inhibited by ACh, suggesting that the M4 muscarinic receptor is coupled to multiple Ca2+ channel subtypes in these neurons. Inhibition of IBa amplitude by muscarinic agonists was also observed after cell dialysis using the conventional whole cell recording configuration. However, internal perfusion of the cell with 100 microM guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDP-beta-S) or incubation of the neurons in Pertussis toxin (PTX) abolished the modulation of IBa by muscarinic receptor agonists, suggesting the involvement of a PTX-sensitive G-protein in the signal transduction pathway. Given that ACh is the principal neurotransmitter mediating vagal innervation of the heart, the presence of this inhibitory mechanism in postganglionic intracardiac neurons suggests that it may serve for negative feedback regulation.  相似文献   

16.
The distribution of voltage-sensitive elevations of the level of Ca2+ in untreated SH-SY5Y cells and cells that had been induced to differentiate with staurosporine was investigated by monitoring fura-2 fluorescence in cell suspensions, and by using microfluorometry and quantitative fluorescence imaging on cell bodies and on cellular processes. Cell bodies of both types of cells displayed small Ca2+ elevations, which were composed of transient and sustained components. Elevations were partially sensitive to the L- and N-channel blockers nifedipine (1 microM) and omega-conotoxin GVIA (100 nM) respectively. Up to ten times Ca2+ elevations were observed in varicosities of treated cells than in cell bodies of treated and cells. These elevations were insensitive to compounds known to release Ca2+ from intracellular stores. Elevations of Ca2+ were sustained, and they were insensitive to 5 microM nifedipine, 100 nM omega-agatoxin IVA and 100 nM omega-conotoxin GVIA, and partially sensitive to 2 microM omega-conotoxin GVIA, indicating predominance of non-L-type, non-N-type, non-P-type channel activity. The intracellular localization of neuropeptide Y, a marker of differentiation in these cells, was also investigated by fluorescence immunocytochemistry. Varicosities of treated cells displayed marked fluorescence when viewed in a confocal microscope. These findings show that the varicosities of staurosporine-treated cells exhibit some of the functional properties of nerve terminals. The varicosities resemble boutons en passant nerve endings and they seem to express Ca2+ channels different from those in the cell body.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) controls all aspects of reproductive function. GnRH is secreted by hypothalamic neurons and exerts its effects on the endocrine system through pituitary gonadotropes, while its effects on sexual receptivity are mediated by the central nervous system. The electrophysiological responses of central neurons to GnRH have shown both excitatory and inhibitory responses, but little is known about the mechanisms by which GnRH can change neuronal excitability. The present study addresses the mechanisms whereby stimulation of the human GnRH receptor changes neuronal excitability by using a combination of electrophysiological and heterologous expression techniques. Microinjection of in vitro transcribed cRNA coding for the human GnRH receptor into enzymatically dissociated adult rat superior cervical ganglion neurons resulted in GnRH receptor expression. Activation of the GnRH receptor inhibited both M-type K+ and N-type Ca2+ channels. Inhibition of M-type K+ channels was insensitive to pertussis toxin pretreatment and blocked by intracellular GDPbetaS. Inhibition of Ca2+ channels was slow in onset, voltage independent and insensitive to pertussis toxin. Wash-out of GnRH resulted in an unusual transient reversal of tonic G-protein-mediated Ca2+ channel inhibition. Block of the N-type Ca2+ channel with omega-conotoxin GVIA decreased Ca2+ current inhibition from 43 to 15%, indicating that the N-type Ca2+ channel is an effector target. Ca2+ channel inhibition was completely abolished by including a Ca2+ chelator in the patch pipette. Cell-attached macropatch experiments indicated that Ca2+ channel inhibition is mediated by a diffusible second messenger. These results demonstrate that the human GnRH receptor can inhibit M-type K+ and N-type Ca2+ channels when heterologously expressed in adult rat neurons. Modulation of M-type K+ and N-type Ca2+ channels in central neurons which contain GnRH receptors is likely to contribute to the changes in neuronal excitability elicited by GnRH.  相似文献   

18.
We examined the properties of voltage-gated calcium channels mediating endogenous dopamine (DA) and acetylcholine (ACh) release in the isolated rat retina. Application of 30 mM KCl elicited the release of DA and ACh, and these releases were abolished in Ca(2+)-free medium. The high K(+)-evoked DA release was largely blocked by both of omega-agatoxin IVA and omega-conotoxin MVIIC, P- and Q-type calcium channel antagonists, and partly blocked by isradipine, and L-type calcium channel antagonist, and omega-conotoxin GVIA, an N-type calcium channel antagonist. omega-Agatoxin IVA at a small dose, sufficient to block P-type channels alone, was however without effect. On the other hand, the high K(+)-evoked ACh release was partly blocked by omega-agatoxin IVA and omega-conotoxin MVIIC, but was resistant to isradipine and omega-conotoxin GVIA. Flunarizine, a non-selective T-type calcium channel antagonist, did not inhibit the release of DA and ACh. Cd2+ markedly blocked the release of both DA and ACh, Co2+ and Ni2+ slightly blocked the release of DA, and the release of ACh was not blocked by these two divalent cations. These results suggest that the high K(+)-evoked release of retinal DA is largely mediated by omega-agatoxin IVA and omega-conotoxin MVIIC sensitive calcium channels (probably Q-type channels), while the release of retinal ACh is largely mediated by as yet uncharacterized Cd2+ sensitive calcium channels. The properties of voltage-gated calcium channels involved in the release of ACh in the rat retina differ from those of DA.  相似文献   

19.
The regulation of excitation-secretion coupling by Ca2+ channels is a fundamental property of the nerve terminal. Peptide toxins that block specific Ca2+ channel types have been used to identify which channels participate in neurotransmitter release. Subsecond measurements of [3H]-glutamate and [3H]dopamine release from rat striatal synaptosomes showed that P-type channels, which are sensitive to the Agelenopsis aperta venom peptide omega-Aga-IVA, trigger the release of both transmitters. Dopamine (but not glutamate) release was also controlled by N-type, omega-conotoxin-sensitive channels. With strong depolarizations, where neither toxin was very effective alone, a combination of omega-Aga-IVA and omega-conotoxin produced a synergistic inhibition of 60-80% of Ca(2+)-dependent dopamine release. The results suggest that multiple Ca2+ channel types coexist to regulate neurosecretion under normal physiological conditions in the majority of nerve terminals. P- and N-type channels coexist in dopaminergic terminals, while P-type and a omega-conotoxin- and omega-Aga-IVA-resistant channel coexist in glutamatergic terminals. Such an arrangement could lend a high degree of flexibility in the regulation of transmitter release under diverse conditions of stimulation and modulation.  相似文献   

20.
1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline. 2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by N(G)-nitro-L-arginine (100 microM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity. 3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)-quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine. 4. The 35 mM K+ response was insensitive to omega-conotoxin GVIA (1 microM) and nifedipine (100 microM), but could be prevented in part by omega-agatoxin IVA (0.1 and 1 microM). The inhibition caused by 0.1 microM omega-agatoxin IVA (approximately 30%) was enhanced by adding omega-conotoxin GVIA (1 microM) or nifedipine (100 microM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 microM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 microM omega-conotoxin GVIA plus 100 microM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX. 5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca2+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号