首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ovarian cancer is characterized by the rapid growth of solid intraperitoneal tumors and large volumes of ascitic fluid. Vascular endothelial growth factor (VEGF) augments tumor growth by inducing neovascularization and may stimulate ascites formation by increasing vascular permeability. We examined the role of VEGF in ovarian carcinoma using in vivo models in which intraperitoneal or subcutaneous tumors were induced in immunodeficient mice using the human ovarian carcinoma cell line SKOV-3. After tumor engraftment (7 to 10 days), some mice were treated with a function-blocking VEGF antibody (A4.6.1) specific for human VEGF. A4.6.1 significantly (P < 0.05) inhibited subcutaneous SKOV-3 tumor growth compared with controls. However, tumor growth resumed when A4.6.1 treatment was discontinued. In mice bearing intraperitoneal tumors (IP mice), ascites production and intraperitoneal carcinomatosis were detected 3 to 7 weeks after SKOV-3 inoculation. Importantly, A4.6.1 completely inhibited ascites production in IP mice, although it only partially inhibited intraperitoneal tumor growth. Tumor burden was variable in A4.6.1-treated IP mice; some had minimal tumor, whereas in others tumor burden was similar to that of controls. When A4.6.1 treatment was stopped, IP mice rapidly (within 2 weeks) developed ascites and became cachectic. These data suggest that in ovarian cancer, tumor-derived VEGF is obligatory for ascites formation but not for intraperitoneal tumor growth. Neutralization of VEGF activity may have clinical application in inhibiting malignant ascites formation in ovarian cancer.  相似文献   

3.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, has been investigated as a potent mediator of brain tumor angiogenesis and tumor growth. We evaluated the effect of VEGF expression on the pathophysiology of tumor growth in the brain. Human SK-MEL-2 melanoma cells, with minimal VEGF expression, were stably transfected with either sense or antisense mouse VEGF cDNA and used to produce intracerebral xenografts. Vascular permeability, blood volume, blood flow, and tumor fluorodeoxyglucose metabolism were assessed using tissue sampling and quantitative autoradiography. Tumor proliferation was assessed by measuring bromodeoxyuridine labeling indices. Tumor vascular density and morphological status of the blood-brain barrier were evaluated by immunohistochemistry. SK-MEL-2 cells transfected with sense VEGF (V+) expressed large amounts of mouse and human VEGF protein; V+ cells formed well-vascularized, rapidly growing tumors with minimal tumor necrosis. V+ tumors had substantial and significant increases in blood volume, blood flow, vascular permeability, and fluorodeoxyglucose metabolism compared to wild-type and/or V- (antisense VEGF) tumors. VEGF antisense transfected V- expressed no detectable VEGF protein and formed minimally vascularized tumors. V- tumors had a very low initial growth rate with central necrosis; blood volume, blood flow, vascular permeability, and glucose metabolism levels were low compared to wild-type and V+ tumors. A substantial inhibition of intracerebral tumor growth, as well as a decrease in tumor vascularity, blood flow, and vascular permeability may be achieved by down-regulation of endogenous VEGF expression in tumor tissue. VEGF-targeted antiangiogenic gene therapy could be an effective component of a combined strategy to treat VEGF-producing brain tumors.  相似文献   

4.
Tumor-derived vascular endothelial growth factor (VEGF)/ vascular permeability factor (VPF) plays an important role in neovascularization and the development of tumor stroma. Furthermore, VEGF receptors are over-expressed in the endothelial cells of tumor vasculature and almost non-detectable in the vascular endothelium of adjoining normal tissues. The differential expression of receptor offers a selective advantage for targeting cytotoxic toxin polypeptides. We have prepared a vascular targeting reagent by chemically linking recombinant VEGF to a truncated form of diphtheria toxin. The VEGF-toxin conjugate was selectively toxic to endothelial cell lines and inhibited experimental neovascularization of the chick chorioallantoic membrane. In the present study, we examined the effects of VEGF-toxin conjugate on solid tumor growth. Athymic nude mice with established subcutaneous tumors were treated with daily intraperitoneal injections of the VEGF-toxin conjugate or free toxin. When compared with control animals treated with the toxin polypeptide alone, the conjugate-treated animals displayed a significant inhibition of tumor growth. Histological analysis of tumors from conjugate-treated animals revealed hemorrhagic necrosis consistent with a vascular-mediated injury. In contrast, highly vascularized normal tissues from conjugate-treated animals demonstrated no evidence of hemorrhage or tissue injury. The conjugate was well tolerated without apparent toxicities. Our results illustrate the anti-tumor activity of a VEGF-toxin conjugate selectively targeting the tumor neovasculature.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is a potent and selective vascular endothelial cell mitogen and angiogenic factor. VEGF expression is elevated in a wide variety of solid tumors and is thought to support their growth by enhancing tumor neovascularization. To block VEGF-dependent angiogenesis, tumor cells were transfected with cDNA encoding the native soluble FLT-1 (sFLT-1) truncated VEGF receptor which can function both by sequestering VEGF and, in a dominant negative fashion, by forming inactive heterodimers with membrane-spanning VEGF receptors. Transient transfection of HT-1080 human fibrosarcoma cells with a gene encoding sFLT-1 significantly inhibited their implantation and growth in the lungs of nude mice following i.v. injection and their growth as nodules from cells injected s.c. High sFLT-1 expressing stably transfected HT-1080 clones grew even slower as s.c. tumors. Finally, survival was significantly prolonged in mice injected intracranially with human glioblastoma cells stably transfected with the sflt-1 gene. The ability of sFLT-1 protein to inhibit tumor growth is presumably attributable to its paracrine inhibition of tumor angiogenesis in vivo, since it did not affect tumor cell mitogenesis in vitro. These results not only support VEGF receptors as antiangiogenic targets but also demonstrate that sflt-1 gene therapy might be a feasible approach for inhibiting tumor angiogenesis and growth.  相似文献   

6.
The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone-ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone-ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.  相似文献   

7.
PURPOSE: To determine the effect of vascular endothelial growth factor and retinopathy level on retinal hemodynamics in nondiabetic and diabetic rats and to evaluate retinal hemodynamics in nondiabetic and diabetic patients. METHODS: Forty-eight diabetic and 22 nondiabetic patients had their diabetic retinopathy levels determined from fundus photographs according to Early Treatment Diabetic Retinopathy Study (ETDRS). Fluorescein angiograms were recorded from the left eye by video fluorescein angiography. Retinal blood flow was calculated from the digitized angiograms. Human recombinant vascular endothelial growth factor or vehicle alone was injected intravitreally into 13 nondiabetic and 11 diabetic rats. RESULTS: Retinal blood flow decreased 33% in patients with ETDRS retinopathy level 10 compared with control patients (P = .001) and increased sequentially in more advanced stages of retinopathy, with a strong correlation between retinal blood flow and retinopathy level (r2 = 0.434, P = .001). In the diabetic rats, retinal blood flow was decreased 35.6% (P = .01). Vascular endothelial growth factor maximally increased retinal blood flow by 36.1% in nondiabetic rats after 25 minutes (P = .001) and by 73.7% in diabetic rats after only 5 minutes (P = .01) and caused a greater response in diabetic than in nondiabetic rats. CONCLUSIONS: Retinal blood flow increases with advancing nonproliferative diabetic retinopathy in humans, and diabetes accentuates the vascular endothelial growth factor-induced increase in retinal blood flow and venous dilation in rats. Vascular endothelial growth factor may contribute to the changes in retinal hemodynamics and morphology observed in early diabetic retinopathy.  相似文献   

8.
The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 micrograms/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/ VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression-i.e., blocking the interactions between VEFG/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.  相似文献   

9.
We have generated a transgenic mouse model for astrocytoma by expressing the v-src kinase under control of the glial fibrillary acidic protein (GFAP) gene regulatory elements in astrocytes. Abnormal astrogliosis was observed in all transgenic animals already at 2 weeks postnatally, frequently followed by the development of dysplastic changes. Later, small proliferative foci arose, and overt astrocytoma developed in the brain and spinal cord in 14.4% of mice after a follow up time of 65 weeks. While early lesions were histologically consistent with low-grade astrocytoma, at later stages most tumors were highly mitotic and frankly malignant. Vascular endothelial growth factor (VEGF) was expressed by tumor cells already at early stages, suggesting induction by v-src, and it was most pronounced in pseudopalisading cells surrounding necrotic areas, implying additional upregulation by hypoxia. In larger lesions, mitotic activity and expression of flk-1, the cognate receptor of VEGF were induced in endothelial cells. Therefore, end-stage tumors mimicked the morphological and molecular characteristics of human glioblastoma multiforme. Time course and stochastic nature of the process indicate that v-src did not suffice for malignant transformation, and that astrocytomas were the result of a multistep process necessitating co-operation of additional genetic events.  相似文献   

10.
Vascular hyperpermeability and excessive neovascularization are hallmarks of early and late vascular endothelial cell dysfunction induced by diabetes. Vascular endothelial growth factor (VEGF) appears to be an important mediator for these early and late vascular changes. We reported previously, using skin chambers mounted on backs of SD rats, that neutralizing antibodies directed against VEGF blocked vascular permeability and blood flow changes induced by elevated tissue glucose and sorbitol levels in a dosage-dependent manner. We report in this study, using the same skin chamber model and neutralizing antibodies directed against basic fibroblast growth factor (FGF-2), that another member of the heparin-binding growth factor family also mediates glucose- and sorbitol-induced vascular permeability and blood flow increases. In addition, we show that 1) TBC1635, a novel heparin-binding growth factor antagonist, blocks the vascular hyperpermeability and blood flow increases induced by elevated tissue levels of glucose and sorbitol and by topical application of VEGF and FGF-2 to granulation tissue in skin chambers, and 2) suramin, a commercially available growth factor antagonist, blocks glucose-induced vascular dysfunction. These results suggest an early role for heparin-binding growth factors in the vascular dysfunction caused by excessive glucose metabolism, possibly via the sorbitol pathway.  相似文献   

11.
OBJECTIVE: To quantify vascular smooth muscle polyploidy and growth kinetics in aortic cells from stroke-prone spontaneously hypertensive rats (SHRSP) and from normotensive Wistar-Kyoto (WKY) rats, and to examine the effects of treatment with the angiotensin converting enzyme (ACE) inhibitor perindopril on these parameters. DESIGN: The following experimental groups were used: young (age < 20 weeks) and old (age > 20 weeks) untreated WKY rats and untreated SHRSP; SHRSP treated with perindopril, and age- and sex-matched control SHRSP; and SHRSP treated with hydralazine and hydrochlorothiazide and age- and sex-matched control SHRSP. The effects of treatment of the SHRSP with perindopril for 30 days on vascular smooth muscle polyploidy and growth kinetics were measured and compared with the effects of equivalent antihypertensive doses of hydralazine and hydrochlorothiazide. METHODS: Vascular smooth muscle polyploidy was measured using flow-cytometry DNA analysis of freshly harvested cells. Growth curves were performed on cultured aortic cells. Plasma renin activity was measured by an antibody-trapping method, plasma angiotensin II (Ang II) by radioimmunoassay and plasma ACE activity by a colorimetric method. Cardiac hypertrophy was evaluated by measuring the heart weight:body weight and left ventricle + septum weight:body weight ratios. RESULTS: The SHRSP had markedly and significantly elevated G2 + M phase of the cell cycle. Treatment with perindopril resulted in a significant reduction in polyploidy in the SHRSP, whereas treatment with hydralazine and hydrochlorothiazide had no effect on the percentage of cells in the G2 + M phase of the cell cycle. The regression of polyploidy after treatment with perindopril was associated with a significant reduction in the concentration of Ang II and ACE activity, and with a significant regression of cardiac hypertrophy. Increased mitogenesis of cultured vascular smooth muscle cells from the SHRSP was not altered by treatment with perindopril. CONCLUSIONS: ACE inhibition reduces vascular smooth muscle polyploidy in large conduit arteries. This type of vascular protection is mediated by the reduced Ang II and possibly by increased kinins level, rather than by the hypotensive effect alone.  相似文献   

12.
Intussusceptive microvascular growth refers to vascular network formation by insertion of interstitial tissue columns, called tissue pillars or posts, into the vascular lumen and subsequent growth of these columns, resulting in partitioning of the vessel lumen. While intussusception has been reported in normal developing organs, its existence in solid tumors has not been previously documented. By observing the growth of the human colon adenocarcinoma (LS174T) in vivo for a period of 6 weeks, we demonstrate that intussusception is an important mechanism of tumor angiogenesis. At the leading edge of the tumor, vascular growth was found to occur by both intussusception and endothelial sprouting. In the stabilized regions, intussusception led to network remodeling and occlusion of vascular segments. The formation of some tissue pillars appears to depend on intravascular blood-flow patterns or changes in intravascular shear stress. The rapid vascular remodeling by intussusception could possibly contribute to intermittent blood flow in tumors.  相似文献   

13.
PURPOSE: The purpose of the study is to determine the effect of exogenous vascular endothelial growth factor (VEGF) on the primate retina and its vasculature. METHODS: Ten eyes of five animals were studied. Physiologically relevant amounts of the 165 amino acid isoform of human recombinant VEGF were injected into the vitreous of six healthy cynomolgus monkey eyes. Inactivated human recombinant VEGF or vehicle was injected into four contralateral control subject eyes. Eyes were assessed by slit-lamp biomicroscopy, tonometry, fundus color photography, fundus fluorescein angiography, light microscopy, and immunostaining with antibodies against proliferating cell nuclear antigen and factor VIII antigen. RESULTS: All six bioactive VEGF-injected eyes developed dilated, tortuous retinal vessels that leaked fluorescein. Eyes receiving multiple injections of VEGF developed progressively dilated and tortuous vessels, venous beading, edema, microaneurysms, intraretinal hemorrhages and capillary closure with ischemia. The severity of the retinopathy correlated with the number of VEGF injections. None of the four control eyes exhibited any abnormal retinal vascular changes. The endothelial cells of retinal blood vessels were proliferating cell nuclear antigen positive only in the bioactive VEGF-injected eyes. CONCLUSION: Vascular endothelial growth factor is sufficient to produce many of the vascular abnormalities common to diabetic retinopathy and other ischemic retinopathies, such as hemorrhage, edema, venous beading, capillary occlusion with ischemia, microaneurysm formation, and intraretinal vascular proliferation.  相似文献   

14.
In the accompanying paper (Luo et al., Cancer Res., 58: 2652-2660, 1998), we demonstrated that vascular endothelial growth factor (VEGF), also designated vascular permeability factor (VPF), significantly accumulated in all mouse malignant ascites tested, suggesting its fundamental role in ascites tumors. Removal of VEGF may inhibit the development of ascites tumors. In this study, using a goat antimouse VEGF-neutralizing antibody, we tested this hypothesis with two well-defined syngeneic mouse ascites tumors: MM2 breast adenocarcinoma and OG/Gardner lymphoma 6C3HED (expressing moderate and low levels of VEGF, respectively). This antibody significantly inhibited MM2 and OG cell-free ascites fluid-induced hyperpermeability of mouse peritoneal microvessels and in vitro endothelial cell growth. Mice bearing tumors were administered i.p. daily with the antibody or normal goat IgG as controls for 8 days, at doses of 20-fold (for MM2-bearing mice) or 40-fold (for OG-bearing mice) the estimated amounts of VEGF that kinetically accumulated in the ascites fluid after the tumor inoculation. The average volume of ascites fluid, number of tumor cells and leaked RBCs, and the peritoneal microvessel permeability in MM2-bearing mice that received the antibody treatment were significantly lower than those in the matched controls (P < 0.01). Unexpectedly, OG-bearing mice did not show satisfactory response to the anti-VEGF treatment. This discrepancy was not likely due to inadequate doses or different host immune responses, but it was quite possibly to the different characteristics of MM2 carcinoma and OG lymphoma tumors, the latter being strongly invasive, and/or the existence of an inflammatory mediator(s), such as bradykinin or cytokine(s) other than VEGF. In summary, our results directly demonstrated, for the first time, differential roles for VEGF in ascites tumors in vivo and suggest the potential of VEGF inhibition as a specific therapy for ascites tumors of carcinoma origin, which are the major cause of the malignant ascites in adult humans.  相似文献   

15.
Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis by acting as a potent inducer of vascular permeability as well as serving as a specific endothelial cell mitogen. The importance of angiogenic factors such as VEGF, although clearly established in solid tumors, has not been fully elucidated in human hematopoietic neoplasms. We examined the expression of mRNA and protein for VEGF in 12 human hematopoietic tumor cell lines, representing multiple lineages and diseases, including leukemia, lymphoma, and multiple myeloma. Our results revealed that VEGF message was expressed in these cells and that the corresponding protein was secreted into the extracellular environment. Five of the 12 cell lines were also found to express the Flt-1 receptor for VEGF at a moderate to strong level, suggesting an autocrine pathway. When human vascular endothelial cells were exposed to recombinant human VEGF, there was an increase in the mRNA for several hematopoietic growth factors including macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin 6. Plasma cells in the bone marrow from patients diagnosed with multiple myeloma were found to express VEGF, whereas both the Flt-1 and KDR high affinity VEGF receptors were observed to be markedly elevated in the normal bone marrow myeloid and monocytic cells surrounding the tumor. These data raise the possibility that VEGF may play a role in the growth of hematopoietic neoplasms such as multiple myeloma through either a paracrine or an autocrine mechanism.  相似文献   

16.
Vascular damage and blood flow stasis are consequences of photodynamic therapy (PDT) of solid tumors using many photosensitizers. Microvascular stasis and resulting hypoxia are effective means to produce cytotoxicity and tumor regression. The observation of blood flow stasis after photodynamic therapy results from a combination of damage to sensitive sites within the microvasculature and the resulting physiological responses to this damage. A generalized hypothesis for the mechanisms leading to vessel stasis begins with perturbation and damage to endothelial cells during light treatment of photosensitized tissues. Endothelial cell damage leads to the establishment of thrombogenic sites within the vessel lumen and this initiates a physiological cascade of responses including platelet aggregation, the release of vasoactive molecules, leukocyte adhesion, increases in vascular permeability, and vessel constriction. These effects from damage combine to produce blood flow stasis.  相似文献   

17.
The monoterpenes d-limonene and perillyl alcohol (POH) inhibit the growth of mammary tumors. In this investigation we tested whether POH is also effective in reducing liver tumor growth. Diethylnitrosamine was used to induce liver tumors in male Fischer 344 rats. Two weeks after diethylnitrosamine exposure was discontinued, the animals were divided into POH-treated and untreated groups. The mean liver tumor weight for the POH-treated rats after 19 weeks of POH treatment was 10-fold less than that for the untreated animals. POH did not influence tumor cell proliferation but increased the apoptotic index approximately 10-fold. The mRNA levels for the mannose 6-phosphate/insulin-like growth factor II receptor and the transforming growth factor beta type I, II, and III receptors were also significantly increased in the liver tumors from the POH-treated animals when compared to the corresponding receptor mRNA levels in the normal tissue surrounding the tumors and in the tumors of untreated animals. These results demonstrate that POH does not promote the formation of liver tumors, but rather inhibits their growth by enhancing tumor cell loss through apoptosis.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor with a unique specificity for vascular endothelial cells. In addition to its role in vasculogenesis and embryonic angiogenesis, VEGF is implicated in pathologic neovascularization associated with tumors and diabetic retinopathy. Four different constructs of a short variant of VEGF sufficient for receptor binding were overexpressed in Escherichia coli, refolded, purified, and crystallized in five different space groups. In order to facilitate the production of heavy atom derivatives, single cysteine mutants were designed based on the crystal structure of platelet-derived growth factor. A construct consisting of residues 8 to 109 was crystallized in space group P2(1), with cell parameters a = 55.6 A, b = 60.4 A, c = 77.7 A, beta = 90.0 degrees, and four monomers in the asymmetric unit. Native and derivative data were collected for two of the cysteine mutants as well as for wild-type VEGF.  相似文献   

19.
To clarify the mechanism of the reduction of metastatic liver tumors in rats treated with angiogenesis inhibitor TNP-470, the death of tumor cells was examined pathologically and ultrastructurally. Liver metastases were developed by intravenous injection of AH-130 cells. TNP-470 was given subcutaneously after tumor cell injection. Alterations in the size and number of metastatic tumors were examined at various time points, in association with the analysis of cell death pattern. The metastatic nodules were divided into 4 groups according to the morphological patterns of cell death; no cell death, scattered apoptosis, central necrosis, and diffuse necrosis. The number and size of the metastatic tumors at 2 weeks in untreated rats were larger than those in treated rats. The number of tumors in untreated rats decreased, but the tumor size increased. All rats treated with TNP-470 were alive and free from tumors after 4 weeks, whereas all the untreated rats died of liver metastases. The percentages of the tumors with necrosis in untreated rats (61.2% at 2 weeks and 100% at 4 weeks) were significantly higher than that (31.8% at 2 weeks) in treated rats (P < 0.01). The percentage of the tumors containing apoptotic cells in treated rats was significantly higher than that in untreated rats (54.5% vs. 30.6%; P < 0.05). The growth of metastatic tumors without treatment might be faster than the growth of vessels in untreated tumors, resulting in central necrosis due to ischemia. On the other hand, the reduction of metastatic liver tumors treated with TNP-470 might be caused by inhibition of angiogenesis, providing a weak ischemic stimulus which triggers apoptosis, rather than by a direct cytotoxic effect on tumor cells, because previous in vivo experiments demonstrated that TNP-470 affected endothelial cells but not tumor cells.  相似文献   

20.
BACKGROUND: Transmyocardial laser revascularization is a new therapy for patients with refractory angina. Although clinical studies suggest that transmyocardial laser revascularization decreases angina and may improve regional blood flow, the underlying mechanisms are not elucidated. We hypothesized that one mechanism may relate to stimulation of vascular growth in laser-treated regions. METHODS: Transmyocardial laser revascularization channels were made with holmium:yttrium-aluminum garnet or carbon dioxide lasers in eight normal canine hearts; animals were sacrificed 2 to 3 weeks later and examined for vascular density and for evidence of smooth muscle proliferation. RESULTS: The original channels were infiltrated by granulation tissue with associated vascularity. Vascular growth was stimulated immediately surrounding the channel remnant as evidenced by an increase in the number of vessels (approximately twice that of the control region) and an increase in the number of vascular cells staining positive for markers of cellular proliferation. CONCLUSIONS: Transmyocardial laser revascularization leads to local vascular growth as early as 2 weeks after treatment. It remains to be determined whether this mechanism contributes to increased regional blood flow or to clinical benefits associated with this novel form of therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号