首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a physical map of human chromosome 22q using bacterial artificial chromosome (BAC) clones. The map consists of 613 chromosome 22-specific BAC clones that have been localized and assembled into contigs using 452 landmarks, 346 of which were previously ordered and mapped to specific regions of the q arm of the chromosome by means of chromosome 22-specific yeast artificial chromosome clones. The BAC-based map provides immediate access to clones that are stable and convenient for direct genome analysis. The approach to rapidly developing marker-specific BAC contigs is relatively straightforward and can be extended to generate scaffold BAC contig maps of the rest of the chromosomes. These contigs will provide substrates for sequencing the entire human genome. We discuss how to efficiently close contig gaps using the end sequences of BAC clone inserts.  相似文献   

2.
We describe the assembly of a 1-Mb cosmid contig and restriction map spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. The map was constructed from 16 smaller contigs assembled by fingerprinting, a BAC and a PAC clone, and 42 previously unmapped cosmids. In most cases, single-step cosmid walks were sufficient to join two previously assembled contigs, and all but one gap was filled from this cosmid contig library. The remaining gap of about 19 kb was spanned with a single BAC and a single PAC clone. EcoRI mapping of a dense set of overlapping clones validated the assembly of the map and indicated a length of 1040 kb for the contig. This high-resolution clone map provides an ideal resource for gene identification through cDNA selection, exon trapping, and DNA sequencing.  相似文献   

3.
To generate sequence-ready templates for the gene-rich Xp11.23 region, we have constructed a 1.5-Mb bacterial artificial chromosome (BAC) contig spanning the interval between the DNA markers OATL1 and DXS255. The contig includes 28 BACs, ranging in size from 58 to 258 kb with an average size of 135 kb, which provide 2.5-fold coverage of the region. The BAC contig was constructed based entirely on the content of 40 DNA markers from a previously established YAC contig and 11 new markers developed from BAC-end DNA sequences, 4 of which were required to close gaps in the map. There was no evidence of rearrangement, instability, or chimerism in any of the BAC clones. The BAC cloning system appears to provide robust and total physical coverage of this gene-rich region with clones that are suitable for DNA sequencing.  相似文献   

4.
5.
An expression map containing 48 ESTs was constructed to identify a tumor-suppressor gene involved in B-cell chronic lymphocytic leukemia (B-CLL), which was previously assigned to chromosome band 13q14.3 close to genetic markers D13S25 and D13S319. Thirty-nine of these 48 ESTs, together with 11 additional ones listed in databases, were initially assigned to chromosome 13q14 between markers D13S168 and D13S176. Nine others have recently been located in the D13S319 region. Our results indicate that 48 of the 59 ESTs analyzed belong to a YAC contig of chromosome 13 band q14, and 22 are contained on YAC 933e9, which encompasses the B-CLL critical region. Ten of these 22 ESTs were accurately assigned on a PAC, BAC, and cosmid contig encompassing the smallest minimal deletion area described so far in B-CLL, and 20 were tested for their expression on 27 normal or tumor tissues. One EST appears to be a likely candidate for the tumor-suppressor gene involved in B-CLL.  相似文献   

6.
A physical mapping method for unique nucleotide sequences on specific chromosomal regions was developed combining objective chromosome identification and highly sensitive fluorescence in situ hybridisation (FISH). Four unique nucleotide sequences cloned from rice genomic DNAs, varying in size from 1.3 to 400 kb, were mapped on a rice chromosome map. A yeast artificial chromosome (YAC) clone with a 399 kb insert of rice genomic DNA was localised at the distal end of the long arm of rice chromosome (1q2.1) and a bacterial artificial chromosome (BAC) clone (180 kb) containing the rice leaf blast-resistant gene (Pi-b) was shown to occur at the distal end of the long arm of chromosome 2 (2q2.1). A cosmid (35 kb) with the resistance gene (Xa-21) against bacterial leaf blight was mapped on the interstitial region of the long arm on chromosome 11 (11q1.3). Furthermore a single RFLP marker, 1.29 kb in size, was mapped successfully to the distal region of the long arm of rice chromosome 4 (4q2.1). For precise localisation of the nucleotide sequences within the chromosome region, image analyses were effective. The BAC clone was localised to the specific region, 2q2.1:96.16, by image analysis. The result was compared with the known location of the BAC clone on the genetic map and the consistency was confirmed. The effectiveness and reliability in physically mapping nucleotide sequences on small plant chromosomes achieved by the FISH method using a variety of probes was unequivocally demonstrated.  相似文献   

7.
8.
We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta2(closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 +/- 1.3 and 8.0 +/- 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a "two-step walking" method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta. The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.  相似文献   

9.
We present a high-resolution bacterial contig map of 3.4 Mb of genomic DNA in human chromosome 21q11-q21, encompassing the region of elevated disomic homozygosity in Down Syndrome-associated abnormal myelopoiesis and leukemia, as well as the markers, which has shown a strong association with Alzheimer's Disease that has never been explained. The map contains 89 overlapping PACs, BACs, or cosmids in three contigs (850, 850, and 1500 kb) with two gaps (one of 140-210 kb and the second <5 kb). To date, eight transcribed sequences derived by cDNA selection, exon trapping, and/or global EST sequencing have been positioned onto the map, and the only two genes so far mapped to this cytogenetic region, STCH and RIP140 have been precisely localized. This work converts a further 10% of chromosome 21q into a high-resolution bacterial contig map, which will be the physical basis for the long-range sequencing of this region. The map will also enable positional derivation of new transcribed sequences, as well as new polymorphic probes, that will help in elucidation of the role the genes in this region may play in abnormal myelopoiesis and leukemia associated with trisomy 21 and Alzheimer's Disease.  相似文献   

10.
We have combined genetic, radiation-reduced somatic cell hybrid (RRH), fluorescent in situ hybridization (FISH), and physical mapping methods to generate a contig of overlapping YAC, PAC, and cosmid clones corresponding to > 3 continuous Mb in 11q13. A total of 15 STSs [7 genes (GSTP1, ACTN, PC, MLK3, FRA1, SEA, HNP36), 4 polymorphic loci (D11S807, D11S987, GSTP1, D11S913), 3 ESTs (D11S1956E, D11S951E, and W1-12191), and 1 anonymous STS (D11S703)], mapping to three independent RRH segregation groups, identified 26 YAC, 7 PAC, and 16 cosmid clones from the CGM, Roswell Park, CEPH Mark I, and CEPH MegaYAC YAC libraries, a 5 genome equivalent PAC library, and a chromosome II-specific cosmid library. Thirty-six Alu-PCR products derived from 10 anonymous bacteriophage lambda clones, a cosmid containing the polymorphic marker D11S460, or STS-positive YAC or cosmid clones were identified and used to screen selected libraries by hybridization, resulting in the identification of 19 additional clones. The integrity and relative position of a subset of clones was confirmed by FISH and were found to be consistent with the physical and RRH mapping results. The combination of STS and Alu-PCR-based approaches has proven to be successful in attaining contiguous cloned coverage in this very GC-rich region, thereby establishing for the first time the absolute order and distance between the markers: CEN-MLK3-(D11S1956E/D11S951E/W1-12191)-FRA1-D 11S460-SEA-HNP36/ D11S913-ACTN-PC-D11S703-GSTP1-D11S987-TEL.  相似文献   

11.
12.
13.
14.
Although several genes for mental retardation and epilepsy, including double cortex/X-linked lissencephaly (DC/XLIS), have been localized to Xq21.3-q23, there has been no complete physical map of this region available. We constructed a YAC/STS contig map by initiating two yeast artificial chromosome (YAC) walks from the markers that flanked the DC/XLIS candidate gene region. We report an approximately 4-Mb contig extending from DXS287 to DXS8088, encompassing DXS1072 and DXS1059, and composed of 52 YACs identified with 15 previously published STSs and 19 novel YAC-end STSs. This contig also contains two brain-specific genes, doublecortin (HGMW-approved symbol DCX), responsible for DC/XLIS, and PAK3, which may be responsible for neurological diseases localized to this region. The new contig extends and incorporates several previously published contigs, providing a total overlapping contig extending approximately 34 Mb from DXS441 in Xq13.1 to DXS8088 in Xq23.  相似文献   

15.
16.
Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. We now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. We used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3-6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKCepsilon), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKCepsilon as a previously unmapped candidate gene involved in thyroid tumorigenesis.  相似文献   

17.
A 2Mb contig was constructed of yeast artificial chromosomes (YACs) and P1 artificial chromosomes (PACs), extending from DXS6849 to a new marker EC7034R, 1Mb distal to UBE1, within the p11.3 region of the human X chromosome. This contig, which has on average four-fold cloned coverage, was assembled using 37 markers, including 13 new sequence tagged sites (STSs) developed from YAC and PAC end-fragments, for an average inter-marker distance of 55kb. The inferred marker order predicted from SEGMAP analysis, STS content and cell hybrid data is Xpter-EC7034R-EC8058R-FB20E11-DXS7804-D XS8308-(DXS1264, DXS1055)-DXS1003-UBE1-(UHX), PCTK1)-DXS1364-DXS1266-DXS337-SYN1-DXS6 849-cen. One (TC)n dinucleotide sequence from an end-clone was identified and found to be polymorphic (48% heterozygosity). The contig is merged with published physical maps both in the distal and in the centromeric direction of Xp, and provides reagents to aid in the DNA sequencing and the finding of genes in this region of the human genome.  相似文献   

18.
The high resolution mapping of the ataxia telangiectasia (A-T) locus on chromosome 11q22-23 requires the generation of new polymorphic markers specifically within the segment of 11q22-23 to which the locus has been assigned. We have made use of a library of Alu-PCR clones, amplified from a radiation reduced somatic cell hybrid containing the relevant chromosome 11 segment, to generate sequence tagged sites (STS) within the 11q22-23 region and have used YAC clones to extend the loci identified by these STSs. The identification of paired polymorphisms (from Alu-PCR and the associated YAC derived clone), which are physically linked, but which show minimal linkage disequilibrium, provides a highly informative haplotype for use in genetic linkage analysis in A-T families. We describe the characterisation of 2 such polymorphic loci, D11S535 and D11S611, which map between existing flanking markers, and which provide additional information on the location of the major A-T locus.  相似文献   

19.
A bacterial artificial chromosome (BAC) contig was constructed across the proximal part of the H2-M region from the major histocompatibility complex (Mhc) of mouse strain 129 (H2bc). The contig is composed of 28 clones that span approximately 1 megabasepair (Mb), from H2-T1 to Mog, and contains three H2-T genes and 18 H2-M genes. We report the fine mapping of the H2-M class I gene cluster, which includes the previously reported M4-M6, the M1 family, the M10 family, and four additional class I genes. All but two of the H2-M class I genes are conserved among haplotypes H2k, H2b, and H2bc, and only two genes are found in polymorphic HindIII fragments. Six evolutionarily conserved non-class I genes were mapped to a 180 kilobase interval in the distal part of the class I region in mouse, and their order Znf173-Rfb30-Tctex5-Tctex6- Tctex4-Mog was found conserved between human and mouse. In this Znf173-Mog interval, three mouse class I genes, M6, M4, and M5, which are conserved among haplotypes, occupy the same map position as the human HLA-A class I cluster, which varies among haplotypes and is diverged in sequence from the mouse genes. These results further support the view that class I gene diverge and evolve independently between species.  相似文献   

20.
The mapping position of human endopeptidase 24.15 (THOP1) has previously been reported to be within the linkage region for the late-onset Alzheimer disease AD2 locus on chromosome 19q13.3. After localizing THOP1 to the high-resolution cosmid contig map of human chromosome 19, we found that the previous report was incorrect. Results of the hybridization and FISH mapping of positive clones indicated localization of THOP1 to chromosome 19p13.3 and not 19q13. 3. This localization is a correction of wrong chromosomal delegation and excludes THOP1 from the region that shows evidence of linkage to late-onset familial Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号