首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.  相似文献   

2.
Based on Takagi–Sugeno (T–S) fuzzy approach we design a fuzzy speed control system for a permanent magnet synchronous motor (PMSM). We derive sufficient conditions for the existence of a T–S fuzzy speed regulator and acceleration observer in terms of linear matrix inequalities (LMIs). We parameterize the gain matrices using the LMI conditions. We implement the proposed T–S fuzzy speed control system by using a TMS320F28335 floating point DSP, and we give simulation and experimental results to verify that our method is practical and useful for controlling a PMSM under model parameter and load torque variations.  相似文献   

3.
针对现有永磁同步电机的直接转矩弱磁控制,难以做到实时监测负载条件和参数变化,只能在空载时实现全速运行问题,文中给出一种基于模糊控制理论的弱磁控制算法。该算法基于实时转速和转矩的变化,根据模糊理论智能地调节直接转矩控制中的磁链给定值,从而实现弱磁控制。通过Matlab/Simulink仿真验证了算法的正确性。  相似文献   

4.
Robust speed control of IM with torque feedforward control   总被引:1,自引:0,他引:1  
The authors describe a digital signal processor-based (DSP-based) robust speed control for an induction motor (IM) with the load-torque observer and the torque feedforward control. In the proposed system, the load torque is estimated by the minimal-order state observer based on the torque component of a vector-controlled IM. Using the load-torque observer, a speed controller can be provided with a torque feedforward loop, thus realizing a robust speed control system. The control system is composed of a DSP-based controller, a voltage-fed pulsewidth modulated (PWM) transistor inverter and a 3.7 kW IM system. An eccentric load with an arm and a weight is coupled to the IM and it generates the sinusoidal gravitational fluctuating torque. Experimental results show robustness against disturbance torque and system parameter change  相似文献   

5.
The development of a nonlinear robust adaptive tracking control system for a three-axis motion simulator is presented in this paper. The motion simulator is used to test and calibrate certain spacecraft instruments within a hardware-in-the-loop environment. Permanent magnet synchronous motor (PMSM) drives are used as simulator actuators. The control system is developed based on Lyapunov stability theory for which only rotor position and stator current signals are required. By using mechanical and electrical state observers, the measurement of acceleration and load torque which is usually required when motor dynamics are considered, is avoided. The control system can be made adaptable to constant unknown motor parameters and load inertia and robust to unknown but bounded fast varying disturbances. Simulation and experimental results are presented to verify the stability and efficacy of the proposed control system.  相似文献   

6.
The study develops a design of an integrated new speed-sensorless approach that involves a torque observer and an adaptive speed controller for a brushless dc motor (BLDCM). The system is based on the vector control drive strategy. The speed-sensorless approach first employs a load observer to estimate the disturbed load torque, and then the estimated load torque is substituted into the mechanical dynamic equation to determine the rotor speed, and thus develop a speed-sensorless algorithm. Additionally, the mechanical rotor inertia constant and the friction coefficient, which are the inputs of the load observer, are estimated using the recursive least-square rule. Therefore, the proposed speed-sensorless approach is unaffected by the time-variant motor parameters nor is affected by the integrator drift problem. It also has a simpler computing algorithm than the extended Kalman filter for estimating the speed. The modified model reference adaptive system algorithm, an adaptive control algorithm, is adopted as a speed controller of the BLDCM to improve the performance of the speed-sensorless approach. Simulation and experimental results confirm that the performance of the design of a new integrated speed-sensorless approach and the adaptive speed controller is good.  相似文献   

7.
In this paper, a modular control approach is applied to a permanent-magnet synchronous motor (PMSM) speed control. Based on the functioning of the individual module, the modular approach enables the powerfully intelligent and robust control modules to easily replace any existing module which does not perform well, meanwhile retaining other existing modules which are still effective. Property analysis is first conducted for the existing function modules in a conventional PMSM control system: proportional-integral (PI) speed control module, reference current-generating module, and PI current control module. Next, it is shown that the conventional PMSM controller is not able to reject the torque pulsation which is the main hurdle when PMSM is used as a high-performance servo. By virtue of the internal model, to ify the torque pulsation it is imperative to incorporate an internal model in the feed-through path. This is achieved by replacing the reference current-generating module with an iterative learning control (ILC) module. The ILC module records the cyclic torque and reference current signals over one entire cycle, and then uses those signals to update the reference current for the next cycle. As a consequence, the torque pulsation can be reduced significantly. In order to estimate the torque ripples which may exceed certain bandwidth of a torque transducer, a novel torque estimation module using a gain-shaped sliding-mode observer is further developed to facilitate the implementation of torque learning control. The proposed control system is evaluated through real-time implementation and experimental results validate the effectiveness.  相似文献   

8.
This paper presents a sensorless speed regulation scheme for a permanent-magnet synchronous motor (PMSM) based solely on the motor line currents measurements. The proposed scheme combines an exact linearization-based controller with a nonlinear state observer which estimates the rotor position and speed. Moreover, the stability of the closed-loop system, including the observer, is demonstrated through Lyapunov stability theory. The proposed observer has the advantage of being insensitive to rotation direction. It is shown how a singularity at zero velocity appears in the scheme and how it can be avoided by switching smoothly from the observer-based closed-loop control to an open-loop control at low velocity. The system performance is tested with an experimental setup consisting of a PMSM servo drive and a digital-signal-processor-based controller for both unidirectional and bidirectional speed regulation  相似文献   

9.
本文针对传统的开环I/F控制方法存在电流幅值固定、抗负载扰动能力弱、转速易波动的问题,提出了一种快速永磁同步电机电流矢量闭环I/F控制方法。该方法在PMSM开环I/F控制方法的基础上引入电机的瞬时有功功率的扰动量调节电流矢量的转速,增加电磁转矩中的阻尼转矩分量,加快电机的转速收敛过程;通过对I/F控制下的模型分析,计算得到电机的功率因数角,利用功率因数角调节电流矢量的幅值,使给定电流幅值跟随负载转矩。仿真和实验结果表明:提出的快速I/F控制方法能明显提高电机快速跟随负载的能力,改善电机转速动态收敛特性、稳定性。  相似文献   

10.
A feedforward controller for permanent magnet synchronous motor (PMSM) has been proposed in this study, and proportional and integral gain could be self-adaptive under different operating conditions. The control structure used in the feedforward system is the same as in the feedback control system. This control structure could guarantee independence of the speed command input to output with the disturbance input to output, which makes the system have better reference trajectory tracking and disturbances rejection. In order to obtain optimal control performance when the parameters are uncertain, a gain scheduling adaptive controller is used in the feedforward system. The proposed controller has been verified by the experimental and simulation results with less steady-state error and better dynamic response than the controllers without it under the condition of external load torque disturbance and PMSM parameter uncertainties.  相似文献   

11.
文中应用一种基于直接反馈线性化(DFL)理论的非线性控制方法.通过对系统输出变量进行李微分,得到反馈线性化所需的坐标变换和非线性系统状态反馈.实现了永磁同步电机系统的输入输出线性化.并将原系统分解为两个线性子系统:转速线性子系统和励磁电流线性子系统,实现了系统的解耦。仿真结果表明:基于直接反馈线性化解耦的永磁同步电机直接转矩控制系统具有较好的速度跟踪性能并提高了系统对电流扰动的鲁棒性。  相似文献   

12.
This paper develops robust 2-DOF current and torque control schemes for a permanent magnet synchronous motor (PMSM) drive with satellite reaction wheel load. A DSP-based experimental PMSM-driven reaction wheel system is established, and the key motor parameters are estimated for realizing the proposed control schemes. In the proposed current control schemes, the traditional 2-DOF controller is augmented with an internal model feedback resonant controller or a robust tracking error cancellation controller (RECC). Comparative performance and error analyses of these two proposed control schemes are given. Accordingly, an improved robust 2-DOF current control scheme combining the resonant controller and the RECC is further proposed. The resonant controller enhances the transient and steady-state tracking of the sinusoidal current, simultaneously rejecting the back electromotive force. A similar robust tracking control for the observed torque can be designed, which exhibits quick transient response. Effectiveness of the proposed controls and the driving performance of the whole reaction wheel are evaluated experimentally.   相似文献   

13.
研究了一种基于模型参考自适应无速度传感器的永磁同步电机直接转矩控制系统:将永磁同步电机的磁链模型作为参考模型,估算的定子磁链模型作为可调模型,设计了自适应定律对电机的转速与定子电阻同时进行跟踪辨识,使用空间电压矢量调制技术组成了永磁同步电机无速度传感器直接转矩控制系统。仿真实验结果表明该系统获得了近似圆形的定子磁链,在转速与转矩变化时均能准确的估算出电机转速,具有良好的动、静态性能。  相似文献   

14.
A technique that optimizes flux level to improve the efficiency of an induction motor is discussed. When harmonics and saturation effects are considered, the slip of minimum loss, or optimal slip, depends on both the speed and the load torque. The measurements of speed and torque are achieved without conventional torque and speed sensors, using motor terminal quantities. The control strategy is divided into two stages. First, the optimal slip is searched by trial and error, and the results are tabulated in microprocessor memory. Then the motor is operated at optimal efficiency by simply tracking the optimal slip given in the table. Experimental results show good performance in energy saving and dynamic responses  相似文献   

15.
This paper presents a mode switching control (MSC) scheme in discrete-time domain for fast and precise set-point tracking in servo systems subject to control saturation and unknown disturbance. The basic idea is to combine the proximate time-optimal servomechanism (PTOS) and the composite nonlinear feedback (CNF) control, using the output position as the only measurable information for feedback. The PTOS is responsible for fast targeting in servo systems when the tracking error is large, and once the system trajectory enters into some specified region, the CNF will take over the control to ensure a smooth settling without compromising the fast transient performance. A reduced-order extended state observer is adopted to estimate the speed signal for feedback and the disturbance for compensation. The asymptotical stability of the proposed MSC scheme is analyzed and the switching conditions are provided. Simulation and experimental results on a permanent magnet synchronous motor (PMSM) servo system verify that the proposed control scheme is effective in improving the tracking performance for a wide range of target set-points.  相似文献   

16.
An optimal control system synthesis method which can achieve vector and speed control simultaneously for permanent-magnet synchronous motor (PMSM) drives is proposed in this paper. A state-space multiple-input-multiple-output (MIMO) model for PMSM is first developed and the compensation for the nonlinearities in this model is discussed. A pseudo-linearized PMSM model is dynamically constructed through the state detection, and subsequently an optimal speed controller is developed based on this linearized model. The integral control technique is incorporated to eliminate possible speed offsets. A speed observer is further developed to eliminate the speed sensor from the drive  相似文献   

17.
黄松  李海剑  石伟 《电子科技》2020,33(1):57-62
针对两相静止坐标系下基于观测器进行IPMSM无传感器控制时存在电角度估算误差与交直轴电感和负载转矩耦合、电角度补偿复杂等问题,文中选择在同步旋转坐标系下采用电机原有电感参数进行IPMSM无传感器控制。通过建立PMSM 的矢量数学模型,对存在电角度估算误差时采用IPMSM原参数对反电动势估算的影响进行分析,分析结果验证了该方法的理论可行性。利用MATLSB/Simulink进行仿真,并进行了针对性实验。实验结果表明,文中所提算法无须电角度补偿,在扰动条件下仍能对电机转子位置和速度进行良好地跟踪。  相似文献   

18.
A load torque compensation scheme under the speed measurement delay   总被引:1,自引:0,他引:1  
The average speed detection method involves a measurement delay, which can cause a serious instability problem to the unknown load torque observer. The instability can be cured by inserting an artificial delay into the torque-filtering path of the observer. Also, by utilizing the concept of the phase lead compensator, we propose a method of designing an arbitrary high-order low-pass filter (Q filter). Through the results of simulation and experiments, we show that our proposed method yields more robust and improved results than the conventional load torque observer  相似文献   

19.
为研究永磁同步电机(PMSM)在无速度传感器工况下的速度跟踪估计,以PMSM的工作原理为基础,建立了内埋式PMSM的数学模型。利用自适应模糊微分积分滑模鲁棒性强的优点,提出了在自适应模糊微分积分滑模控制条件下采用旋转高频电压注入法对电机转速估计的无速度传感器控制方案,并分析了电机在高低速运行时特点。仿真结果表明,采用高频注入法的自适应模糊微分积分滑模控制系统在高、低速工况下运行时稳定可靠,并具有较好的鲁棒性,能够实现速度跟踪估计。  相似文献   

20.
传统的永磁同步电机直接转矩控制采用双滞环结构,因而电机转矩和磁链脉动较大。SVM控制方法通过合成最合理的电压矢量对转矩和磁链作精确补偿,能够一定程度上降低二者的脉动,但传统SVM控制方法包含了转速和转矩两个PI调节器,两个调节器的参数设计比较复杂,且直接影响了电机性能。提出用快速终端滑模(FTSM)控制器来代替传统PI转速调节器,为了克服滑模带来的抖振,设计负载转矩观测器,并将观测值反馈至滑模控制器。仿真和实验结果表明所提控制方法改善了系统的动静态性能,抗干扰能力增强,同时SMC固有抖振现象得到有效抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号