首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance the sinter ability of Si3N4, powders mixed with 0, 2, and 5 wt% Y2O3 were explosively shock-treated. Compacts of these powders were encapsulated in 96% silica glass containers and isostatically hot-pressed. The shocked Si3N4 with 5 wt% Y2O3 was pressed to a density of 3.09 g/cm3 (95.4% of theoretical) at 1400°C under 430 MPa for 3 h, whereas the unshocked material attained only 82.4% of theoretical density under the same hot isostatic pressing conditions.  相似文献   

2.
Commercially produced pressureless sintered Si3N4, SiC, and SiAlON were characterized with respect to density, phases present, bend strength, and oxidation resistance. The room-temperature bend strengths of sintered Si3N4, SiC, and SiAlON are comparable. However, the room-temperature strengths are much lower (=40 to 50%) than the room-temperature strength of hot–pressed Si3N4 (NC-132). The strength loss in Si3N4 and SiAlON materials at high temperature was attributed to a viscous grain-boundary phase retained during cooling from the sintering temperature. The oxidation resistance of sintered a-SiC was the best of any materials tested.  相似文献   

3.
The development of microstructure in hot-pressed SiaN4 was studiehd for a typical Si3N4 powder with and without BeSiN2 as a densification aid. The effect of hot-pressing temperature on density, α- to β-Si3N4 conversion and specific surface area showed that BeSiN2 appears to increase the mobility of the system by enhancing densification, α- to β-Si3N4 transformation, and grain growth at temperatures between 1450° and 1800°. These processes appear to occur in the presence of a liquid phase.  相似文献   

4.
The microstructure and its influence on the creep behaviour of carbon derived Si3N4-SiC micro/nanocomposite tested in bending at temperatures from 1200° to 1400°C in air has been studied. No phase and microstructure change after creep test implied that material is stable at tested temperature range. After creep test only partial crystallization of glassy intergranular phase has been observed. Creep parameters n close to 1, apparent activation energy around 350 kJ/mol together with TEM observation indicated that the main creep mechanisms is solution precipitation controlled by interface reaction in combination with grain boundary sliding caused by the amorphous intergranular phases present in microstructure. However, the grain boundary sliding is hindered by local SiC particles interlocking neighboring Si3N4 grains.  相似文献   

5.
A fracture mechanics approach was used to investigate the high strength of hot-pressed Si3N4. Room-temperature flexural strengths, fracture energies, and elastic moduli were determined for material fabricated from α- and β-phase Si3N4 powders. When the proper powder preparation technique was used, α-phase powder resulted in a high fracture energy (69,000 ergs/cm2), a high flexural strength (95,000 psi), and an elongated (fiberlike) grain morphology, whereas β-phase powder produced a low fracture energy (16,000 ergs/cm2), a relatively low strength (55,000 psi), and an equiaxed grain morphology. It was hypothesized that the high strength of Si3N4 hot-pressed from α-phase powder results from its high fracture energy, which is attributed to the elongated grains. High-strength Si3N4 has directional properties caused, in part, by the elongated grain structure, which is oriented preferentially with respect to the hot-pressing direction.  相似文献   

6.
Hot isostatically pressed Si3N4 was coated with chemically vapor-deposited Ta2O5, and subjected to oxidative and corrosive environments to determine the feasibility of using a Ta2O5 coating for protecting Si3N4 from hot corrosion. The coated structure was relatively stable at 1000deg;C in pure O2. However, the Ta2O5-Si3N4 system became unstable in an environment containing Na2SO4 and O2 at 1000deg;C because (1) Ta2O5 and Na2SO4 reacted rapidly to form NaTaO3 and (2) subsequently NaTaO3 interacted destructively with the underlying Si3N4 substrate to form a molten phase.  相似文献   

7.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

8.
The compressive creep behavior and oxidation resistance of an Si3N4/Y2Si2O7 material (0.85Si3N4+0.10SiO2+0.05Y2O3) were determined at 1400°C. Creep re sistance was superior to that of other Si3N4 materials and was significantly in creased by a preoxidation treatment (1600°C /120 h). An apparent parabolic rate constant of 4.2 × 10−11 kg2·m-4·s−1 indicates excellent oxidation resistance.  相似文献   

9.
The effects of microstructure and residual stress on the mechanical properties of Si3N4-based three-layer composite materials were investigated. The microstructure of each layer was controlled by the addition of two differently sized silicon carbides: fine SiC nanoparticles (∼200 nm) or relatively large SiC platelets (∼20 µm). When the SiC nanoparticles were added, the average grain size of Si3N4 was reduced because of the inhibition of grain growth by the particles. On the other hand, when the SiC platelets were added, the microstructure of Si3N4 was not much changed because of the large size of the platelets. Three-layer composites were fabricated by placing the Si3N4/SiC-nanoparticle layers on the surface of the Si3N4/SiC-platelet layer. The residual stress was controlled by varying the amount of SiC added. The mechanical properties of three-layer composites with various combinations of microstructure and residual stress level were investigated.  相似文献   

10.
The results of two-step oxidation experiments on chemically-vapor-deposited Si3N4 and SiC at 1350°C show that a correlation exists between the presence of a Si2N2O interphase and the strong oxidation resistance of Si3N4. During normal oxidation, k p for SiC was 15 times higher than that for Si3N4, and the oxide scale on Si3N4 was found by SEM and TEM to contain a prominent Si2N2O inner layer. However, when oxidized samples are annealed in Ar for 1.5 h at 1500°C and reoxidized at 1350°C as before, three things happen: the oxidation k p increases over 55-fold for Si3N4, and 3.5-fold for SiC; the Si3N4 and SiC oxidize with nearly equal k p's; and, most significant, the oxide scale on Si3N4 is found to be lacking an inner Si2N2O layer. The implications of this correlation for the competing models of Si3N4 oxidation are discussed.  相似文献   

11.
The densification behavior of Si3N4 containing MgO was studied in detail. It was concluded that MgO forms a liquid phase (most likely a magnesium silicate). This liquid wets and allows atomic transfer of Si3N4. Evidence of a second-phase material between the Si3N4 grains was obtained through etching studies. Transformation of α- to β-Si3N4 during hot-pressing is not necessary for densification.  相似文献   

12.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

13.
The mechanical behavior of MoSi2 reinforced–Si3N4 matrix composites was investigated as a function of MoSi2 phase content, MoSi2 phase size, and amount of MgO densification aid for the Si3N4 phase. Coarse-phase MoSi2-Si3N4 composites exhibited higher room-temperature fracture toughness than fine-phase composites, reaching values >8 MP·am1/2. Composite fracture toughness levels increased at elevated temperature. Fine-phase composites were stronger and more creep resistant than coarse phase composites. Room-temperature strengths >1000 MPa and impression creep rates of ∼10−8 s−1 at 1200°C were observed. Increased MgO levels generally were deleterious to MoSi2-Si3N4 mechanical properties. Internal stresses due to MoSi2 and Si3N4 thermal expansion coefficient mismatch appeared to contribute to fracture toughening in MoSi2-Si3N4 composites.  相似文献   

14.
The effects of heat treatment in Ar-O2 and H2-H2O atmospheres on the flexural strength of hot isostatically pressed Si3N4 were investigated. Increases in room-temperature strength, to values significantly above that of the aspolished material, were observed when the Si3N4 was exposed at 1400°C to (1) H2 with water vapor pressure ( P H2O) greater than 1 × 10−4 MPa or (2) Ar with oxygen partial pressure ( P O2) of between 7 × 10−6 and 1.5 × 10−5 MPa. However, the strength of the material was degraded when the P H2O in H2 was lower than 1 × 10−4 MPa, and essentially unaffected when the P O2 in Ar was higher than 1.5 × 10−5 MPa. We suggest that the observed strength increases are the result of strength-limiting surface flaws being healed by a Y2Si2O7 layer formed during exposure.  相似文献   

15.
The oxidation behaviors of monolithic Si3N4 and nanocomposite Si3N4-SiC with Yb2O3 as a sintering aid were investigated. The specimens were exposed to air at temperatures between 1200° and 1500°C for up to 200 h. Parabolic weight gains with respect to exposure time were observed for both specimens. The oxidation products formed on the surface also were similar, i.e., a mixture of crystalline Yb2Si2O7 and SiO2 (cristobalite). However, strength retention after oxidation was much higher for the nanocomposite Si3N4-SiC compared to the monolithic Si3N4. The SiC particles of the nanocomposite at the grain boundary were effective in suppressing the migration of Yb3+ ions from the bulk grain-boundary region to the surface during the oxidation process. As a result, depletion of yttribium ions, which led to the formation of a damaged zone beneath the oxide layer, was prevented.  相似文献   

16.
The properties of Si3N4 compositions produced by nitriding slip-cast Si bodies containing up to 16% Si3N4 grog were determined. The introduction of grog consistently lowered the densities, the room- and high-temperature strengths, and the resistance to oxidation. The open structure of the grog-containing mixes favored low-temperature gas-phase reactions leading to α-Si3N4 formation. In higher-density compositions containing predominantly Si, gas-liquid-solid reactions at higher temperatures produced a relatively greater content of the β phase.  相似文献   

17.
A thorough analysis of a silicon nitride (Si3N4)-bonded SiC sidelining material from a Hall-Heroult electrolysis cell is reported. Phase composition before and after chemical degradation of the material is obtained by quantitative analysis using Rietveld refinement of X-ray diffraction data and chemical analysis. The main degradation products as a result of the oxidation of Si3N4 binder phase are Si2ON2 in the upper part and Na2SiO3 in the lower part of the sidelining. The microstructure of α-Si3N4 (needle) and β-Si3N4 (shell) as well as the degradation products Si2ON2 (fiber) and Na2SiO3 (flake) were revealed by electron microprobe analysis. Chemical reactions and degradation mechanisms are proposed based on the presented findings. The degradation in the lower part is more severe than that in the upper part because Na diffusion from the cathode enhances the oxidation of Si3N4. The degradation changes the physical properties of Si3N4-bonded SiC such as density and porosity.  相似文献   

18.
This study shows that the amount ofAl2O3 needed to form high density Si3N4-15Y2-O3 samples can be reduced by using high surface area Si3N4 powder and high N2 overpressure (high sintering temperatures) during the sintering process. The reduction in AI2O3 content results in improved oxidation resistance of the sintered samples.  相似文献   

19.
Si3N4/MoSi2 and Si3N4/WSi2 composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an At-base atmosphere was used before nitriding for the formation of MoSi2 and WSi2; the nitridation in a N2-base atmosphere was followed after presintering with the total stepwise cycle of 1350°C × 20 h +1400°C × 20 h +1450°C × 2 h. The final phases obtained in the two different composites were Si3N4 and MoSi2 or WSi2; no free elemental Si and Mo or W were detected by X-ray diffraction.  相似文献   

20.
Impurity phases in commercial hot-pressed Si3N4 were investigated using transmission electron microscopy. In addition to the dominant, β-Si3N4 phase, small amounts of Si2N2O, SiC, and WC were found. Significantly, a continuous grain-boundary phase was observed in the ∼ 25 high-angle boundaries examined. This film is ∼ 10 Å thick between, β-Si3N4 grains and ∼ 30 Å thick between Si2N2O and β-Si3N4 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号