首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of aluminum trihydroxide (ATH) fillers as non-halogen flame retardants for polymethylmethacrylates (PMMA) creates a conflict between the mechanical properties and heat resistance of the composites. Therefore, to ensure that the PMMA mechanical properties remain satisfactory, improvements in both the filler–polymer interactions and the ability to control the size and size distribution, morphology and dispersion of the fillers are required. Thus, in the present study, bead milling was used to control both the size distribution and dispersion of ATH fillers in MMA, which had an initial average size of 0.75 μm. The dispersion was obtained by alteration of the surface characteristics of ATH fillers using a silane-based dispersing agent, (3-acryloxypropyl) trimethoxysilane (APTMS). Bead milling successfully comminuted the ATH particles and prevented the formation of ATH agglomerates. The smallest average size of the ATH particles after bead milling was 300 nm. Highly dispersed ATH filler particles were observed in the TEM images of the PMMA/ATH composites. The filler–polymer interaction, i.e. the interaction parameter (B), was calculated. The effects of volume fraction, particle size distribution, and surface modification of the fillers on the results of dynamic mechanical analysis (DMA) are discussed. The thermal stability of the PMMA/ATH composites was also investigated using thermal gravimetric analysis (TGA).  相似文献   

2.
The effect of dispersion state of graphene on mechanical properties of graphene/epoxy composites was investigated. The graphene sheets were exfoliated from graphite oxide (GO) via thermal reduction (thermally reduced GO, RGO). Different dispersions of RGO sheets were prepared with and without ball mill mixing. It was found that the composites with highly dispersed RGO showed higher glass transition temperature (Tg) and strength than those with poorly dispersed RGO, although no significant differences in both the tensile and flexural moduli are caused by the different dispersion levels. In particular, the Tg was increased by nearly 11 °C with the addition of 0.2 wt.% well dispersed RGO to epoxy. As expected, the highly dispersed RGO also produced one or two orders of magnitude higher electrical conductivity than the corresponding poorly dispersed RGO. Furthermore, an improved quasi-static fracture toughness (KIC) was measured in the case of good dispersion. The poorly and highly dispersed RGO at 0.2 wt.% loading resulted in about 24% and 52% improvement in KIC of cured epoxy thermosets, respectively. RGO sheets were observed to bridge the micro-crack and debond/delaminate during fracture process due to the poor filler/matrix and filler/filler interface, which should be the key elements of the toughening effect.  相似文献   

3.
The role of functional groups on the surface of graphene oxide (GO) upon its ability to reinforce an epoxy resin has been investigated. It is known that a base-washing process removes oxidative debris from as-prepared GO and reduces the number of functional groups in the material. Both as-prepared (aGO) and base-washed graphene oxide (bwGO) fillers were incorporated into an epoxy resin matrix and the mechanical properties of the different nanocomposites were investigated. The best levels of reinforcement were found with the addition of low loadings of aGO while the bwGO gave inferior levels of reinforcement at the same loading level. Raman spectroscopy was used to both assess the dispersion of the fillers and efficiency of stress transfer to the GO in the nanocomposites during deformation. It was found that for a given filler loading the aGO materials had the most uniform dispersion of filler and the largest Raman band shifts per unit strain, indicating the importance of the presence of functional groups in both dispersing the GO and giving good interfacial stress transfer in the nanocomposites.  相似文献   

4.
We report the reduction of graphene oxide (G-O) films on Al foil using hydrogen as a reducing agent generated during the etching of Al foil in an aqueous solution of hydrochloric acid (HCl). Complete etching of the Al substrate results in simultaneous reduction and a free standing film composed of stacked and overlapped reduced graphene oxide (RG-O) platelets. Generation of hydrogen at the G-O/Al interface increases the reduction efficiency of this method that is demonstrated in better electrical conductivity of the obtained films compared to the RG-O films reduced by the similar method but using remote Al foil in HCl solution and hydrazine reduced RG-O films. By transferring the free standing RG-O films onto Ag NW films, hybrid transparent conductive films (TCFs) with opto-electrical properties comparable to that of ITO films were obtained.  相似文献   

5.
A facile route was adopted to blend the matrix. The PMMA/PEG blend was reinforced with three types of nanofillers, i.e., pristine MWCNT (P-CNT), amine functionalized MWCNT (PDA-EA-CNT) and nanobifiller i.e. nanodiamond functional MWCNT (PDA-EA-CNT-ND) to yield three different types of nanocomposites i.e. PMMA/PEG/P-CNT, PMMA/PEG/PDA-EA-CNT and PMMA/PEG/PDA-EA-CNT-ND. These nanocomposites were reinforced with nanofiller loading (1 wt. %, 3 wt. %, 5 wt. %, 10 wt. %, 30 wt. % and 50 wt. %) by solution casting method. Structure of composite and nanofillers was confirmed by FTIR. FESEM imaging revealed that nanocomposites have micro porous morphology. At high magnification, distribution of functionalized CNT/ND appears to be protruding out of the polymeric matrix. The TGA result suggests that the thermal stability of the nanocomposites was enhanced in comparison to PMMA due to grafting of filler molecules with PMMA/PEG macromolecules. The DTG results showed that the bifiller nanocomposites (PMMA/PEG/PDA-EA-CNT-ND) exhibited improved thermal stability with Tmax (431°C) as compared to P-CNT and amine functionalized CNT (PMMA/PEG/PDA-EA-CNT) with Tmax of 395°C and 418°C respectively. XRD results showed fine interaction between filler and the polymeric matrix. As the filler loading was increased the composites showed pronounced XRD peak at 25.9°, corresponding to (002) reflection of nanotubes. Significant improvement in the mechanical properties of composites was recorded with the reinforcement of fillers as compared to the neat matrix. The most significant improvement in tensile strength and elastic modulus was observed for the bifiller nanocomposites with 5 wt. % PDA-EA-CNT-ND. They showed a tensile strength and elastic modulus of 29.9 MPa and 1474.31 MPa respectively as compared to amine functionalized CNT with tensile strength (25.7) and elastic modulus (1466.99 MPa)and P-CNT with tensile strength(25 MPa) and elastic modulus (1155.75 MPa).  相似文献   

6.
In this work, graphene aerogel (GA)–poly (methyl methacrylate) (PMMA) composites are first developed by backfilling PMMA into the pores of the GAs, providing uniform distribution of multi-layer reduced graphene oxide (m-rGO) sheets in the PMMA matrix. Electrical, mechanical and thermal properties of the as-prepared GA–PMMA composites are investigated by two-probe, microindentation and comparative infrared techniques respectively. As graphene loadings increase from 0.67 to 2.50 vol.%, the composites exhibit significant increases in electrical conductivity (0.160–0.859 S/m), microhardness (303.6–462.5 MPa) and thermal conductivity (0.35–0.70 W/m K) from that of pure PMMA as well as graphene–PMMA composites prepared by traditional dispersion methods. Thermal boundary resistance between graphene and PMMA is estimated to be 1.906 × 10−8 m2 K/W by an off-lattice Monte Carlo algorithm that takes into account the complex morphology, size distribution and dispersion of m-rGO sheets.  相似文献   

7.
Yan Wang  Jie Yin 《Polymer》2011,52(16):3661-3670
Kevlar oligomer functionalized graphene (FGS) was prepared by simple grafting of amino-terminated Kevlar oligomer on graphene oxide (GO) followed by reducing with hydrazine hydrate. The incorporation of FGS shows pronounced effect on the host polymers. High-level reinforcement of both PMMA and PI is observed with low content of FGS (≤0.2 wt %), in this lower loading range, the tensile modulus and strength of composites increase almost linearly as a function of the adding amount of FGS. But no further improvement is obtained as the content of FGS further increased (>0.2 wt %). The mechanism under the reinforcement effect against the FGS loadings is discussed based on the morphological characterizations of the composites. The thermal properties of the composites were also investigated. The glass transition temperature and thermal stability of PMMA were dramatically increased even with the addition of only a small amount of FGS.  相似文献   

8.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

9.
In the decade since the first isolation and identification of graphene, the scientific community is still finding ways to utilize its unique properties. The present review deals with the preparation and physicochemical characterization of graphene-based elastomeric nanocomposites. The processing and characterization of graphene and graphene oxide are described in detail, since the presence of such fillers in an elastomeric matrix affects dramatically the properties of the nanocomposite samples. Several preparation routes for the efficient dispersion of graphene in elastomers are then discussed, while aspects such as the interfacial bonding between the filler and the matrix or interactions between the fillers have been thoroughly analysed. Different types of graphene/elastomer nanocomposites are described in terms of their manufacture and properties and it has been shown that depending on the type of graphene employed and the preparation methods, the mechanical, thermal, electrical and barrier properties of the elastomeric matrix can be enhanced due to the presence of graphene, even at relatively-low filler loadings. In most cases, the formation of a filler network can play a major role in the improvement of the overall performance of the material.  相似文献   

10.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

11.
The advantage of using 3D hybrid filler containing carboxylic acid functionalized multiwalled carbon nanotubes (c‐MWCNTs) and sodium dodecyl sulfate modified Ni–Al layered double hydroxide (sN‐LDH) over c‐MWCNTs and sN‐LDHs acting alone was investigated. PS/c‐MWCNT composites proved to be good for improvement of properties, but not to an appreciable level, especially in case of electrical conductivity, flame retardancy, rheology, and water vapor permeability. Hence, a combination of 0.3 wt % of c‐MWCNT and 3 wt % of sN‐LDH was optimized as additives to assist in the full expression of the filler traits in the nanocomposite and to obtain a versatile nanocomposite with properties specific to both the fillers. This approach slightly decreases the dispersion challenge faced with handling high loadings of CNT and also the intrinsic limitations specific to the individual fillers (i.e., inertness of CNTs and low conductivity of LDHs). Moreover, the anion/anionic repulsion of organically modified CNT/LDH facilitates effective dispersion of the additive opposing adhesion. FTIR and Raman spectroscopy provided evidence for incorporation and proper dispersion of the additives in the polymer matrix, with XRD and TEM confirming a well‐dispersed morphology of the nanocomposites. In this work, focus is made on the improvement of thermal stability, flame retardancy, melt rheology, hardness, electrical conductivity, and water vapor permeability of PS/0.3 wt % c‐MWCNT/3 wt % sN‐LDH nanocomposites over PS/0.3 wt % c‐MWCNT, making use of the synergistic effect of c‐MWCNT coupled with sN‐LDH on polystyrene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46513.  相似文献   

12.
This article reports ultrasound–assisted synthesis of polymethyl methacrylate (PMMA)/reduced graphene oxide (RGO) nanocomposites by in situ emulsion polymerization coupled with in situ reduction of graphene oxide. The thermal degradation kinetics of the nanocomposites was also assessed with Criado and Coats‐Redfern methods. Intense microconvection generated by ultrasound and cavitation results in uniform dispersion of RGO in the polymer matrix, which imparts markedly higher physical properties to resulting nanocomposites at low (≤1.0 wt %) RGO loadings, as compared to nanocomposites synthesized with mechanical stirring. Some important properties of the PMMA/RGO nanocomposites synthesized with sonication (with various RGO loadings) are: glass transition temperature (0.4 wt %) = 124.5°C, tensile strength (0.4 wt %) = 40.4 MPa, electrical conductivity (1.0 wt %) = 2 × 10?7 S/cm, electromagnetic interference shielding effectiveness (1.0 wt %) = 3.3 dB. Predominant thermal degradation mechanism of nanocomposites (1.0 wt % RGO) is 1D diffusion with activation energy of 111.3 kJ/mol. © 2017 American Institute of Chemical Engineers AIChE J, 64: 673–687, 2018  相似文献   

13.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

14.
Polymethyl methacrylate (PMMA)/zinc oxide (ZnO) composites were prepared using melt mixing process. A nano ZnO-treated with aminopropyl triethoxysilane (APTS) was used as reinforcing particles. PMMA composites were obtained with different ZnO loadings of 0, 0.5, 1 and 2 parts by weight. This research was focused on determination of the influence of different loadings of silane-treated ZnO particles on the morphology, electrical, mechanical and flammable properties of the PMMA composites. Addition of ZnO to the PMMA composite was observed to enhance the thermal properties and char formation. The results from cone calorimeter showed 21% reduction in the peak heat release rate for the composite loaded with 1.5 wt% of ZnO as compared to that of neat PMMA. The surface resistivity, volume resistivity and EMI shielding properties of the composites as a function of ZnO loading were estimated. The results showed that the surface and volume resistivity of the composites reinforced with ZnO particles decreased and the EMI shielding increased almost linearly with increasing ZnO volume content. However, the tensile strength of the composites showed a slight decrease with increase in ZnO content. The SEM micrographs and AFM images showed dispersion of ZnO particles in the PMMA matrix. The nanoparticles were distributed evenly on the surface. Nevertheless the pockets of agglomerates could be seen at higher ZnO loading level.  相似文献   

15.
Polymer-carbon nanocomposites incorporate the exceptional properties of both the polymer matrices, such as low cost and simple processing, with the distinctive features of the carbon-based fillers, such as high electrical and thermal conductivities, and excellent mechanical properties. Various fillers like carbon black (CB), graphite, expanded graphite (EG), and carbon nanotubes (CNTs) are being used to produce materials with advanced properties. However, at high filler loading, these filler materials have some major challenges such as filler agglomeration. Recently, graphene has gained increased interest as an alternative filler to produce polymer nanocomposites with advanced characteristics. Thermosetting polymer composites with graphene fillers are being considered for multiple applications and are a subject of interest for researchers because of enhanced properties like excellent corrosion resistance and low density. This review outlines studies to improve the mechanical, electrical, and thermal properties of thermoset/graphene composites.  相似文献   

16.
The effect of the orientation of carbon fillers with different aspect ratios on the resistivity and morphology of conductive polymer composites (CPCs) based on polypropylene was investigated in this study. Multiwall carbon nanotubes (MWNTs) and carbon black (CB) were used as conductive fillers. The CPCs were made by melt compounding, hot pressing, and solid‐state drawing. The alignment of the filler was observed after solid‐state drawing. The resistivity of the composites increased with the draw ratio at relatively low carbon filler loadings (<20 wt %), whereas it remained unchanged at a high filler loading (20 wt % CB). Orientation‐promoted anisotropy of the conductive network was observed in both the morphology and resistivity. MWNTs were found to be better at maintaining a percolating network under large deformations than CB because of their larger aspect ratio and their entangled network structure. The experimentally obtained resistivity was analyzed with percolation theory, and this indicated that the initial three‐dimensional conductive network was deformed into a two‐dimensional network after solid‐state drawing for the composites containing CB. The three‐dimensional network was found in isotropic CPCs containing MWNTs with the same analysis. Theoretical analysis using excluded volume theory was in good agreement with results obtained experimentally. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Yiqun Liu 《Polymer》2006,47(22):7731-7739
The morphology and physical properties of thermoplastic olefin blend (TPO) based nanocomposites containing nanosilica are reported. Addition of maleated PP resulted in improved filler dispersion within the PP matrix, where the filler resided exclusively. This separated morphology resulted in selective reinforcement of the PP matrix without compromising ductility, as demonstrated by mechanical property characterization. The tensile moduli, impact and flexural properties of TPO/nanosilica composites showed improvements at low loadings of nanosilica, indicating a good balance of stiffness and toughness. The addition of nanosilica into the TPOs decreased the size of the dispersed elastomer phase, which was a factor in the observed improvements of impact strength. Silane-modified nanosilica dispersed more efficiently in the polymer matrix, giving rise to improved impact properties of the TPO composites, compared to the unmodified filler.  相似文献   

18.
Wet spun fibers from solutions of dissolving pulp in 1‐ethyl‐3‐methylimidazolium acetate (EmimAc) with up to 50 wt % (based on cellulose) suspended carbon black and graphene nanoplatelets particles were studied. Carbon fillers were dispersed by simple shearing in a Couette type mixer and the resulting spin dope was extruded into a hot water coagulation bath from a single hole spinneret. Microstructure, mechanical properties, and electrical conductivity were assessed as a function of filler loading and discussed in comparison to melt spun fibers with similar fillers. The coagulation process and subsequent drying of wet spun fibers was found to produce a significant microporosity, more so the higher the filler loading. The electrical percolation threshold was quite high in the wet spun fibers and relatively modest values of conductivity were obtained with regard to the high filler loadings. Carbon black was found to be superior to graphene nanoplatelets. This was related to flow‐induced orientation effects. The mechanical properties of the carbon‐filled fibers were found to be similar or lower compared to the pure cellulose fibers because of low interfacial interactions and formation of microporosity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41417.  相似文献   

19.
We report, the preparation of nanocomposites having polyimide (PI) as matrix and graphene oxide (GO) as filler, analyses of matrix–filler interactions, and enhancements in thermomechanical properties of PI/GO as compared with pristine PI. The matrix–filler interactions were analyzed by 1H NMR, X‐ray photoelectron spectroscopy, and density functional theory calculations. The data suggested stronger matrix–filler interactions in PI/GO as compared with PI/G composites. The stronger matrix–filler interactions and homogeneous dispersion of fillers lead to a significant enhancement in mechanical properties in PI/GO nanocomposites. Thus, with just 1 wt% GO content, the modulus of PI/GO composite increased by ~106% as compared with pristine PI. Finally, thermal expansion coefficients of the nanocomposites are also investigated. A plausible hypothesis has been proposed in the text to explain the observed matrix–filler interactions and the subsequent property enhancements in nanocomposites. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Graphene‐based nanocomposites were generated by solution mixing of the graphene oxide filler with chlorinated polyethylene compatibilizers followed by melt mixing of the solution mixed masterbatches with high‐density polyethylene. Compatibilizers with two different chlorination contents were used in different amounts in order to analyze their effect on the morphology and properties of resulting nanocomposites. Peak melting point as well as overall crystallinity was affected by graphene oxide as well as compatibilizers. Compatibilizer with higher chlorination content also interacted with polar graphene oxide surface more effectively thus leading to better filler dispersion in the composites. The addition of compatibilizers to the composites resulted in their shear and processing stability at higher angular frequencies and temperature, which otherwise was not possible for pure polymer as well as composites without compatibilizer. The mechanical performance of the nanocomposites at ambient conditions was also affected by the factors like filler delamination, plasticization of the matrix, compatibilizer content as well as their chlorination level and amorphous/semicrystalline nature. An increase of 16% in tensile modulus and 21% in strength of the composites with 5 wt% of 25% chlorinated compatibilizer at 0.5 wt% graphene oxide content was observed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号