首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally-reduced graphene oxide/TiO2 composites (TRGO/Ti) were prepared by the thermal reduction of graphene oxide/TiO2 composite that was obtained from a simple, environmentally friendly, one-step colloidal blending method. The changes in structural and textural properties as well as their corresponding photocatalytic activities were investigated as a function of calcination temperature. The presence of stacked TRGO sheets significantly retarded both the aggregation and the crystalline phase transformation of TiO2 as increasing the temperature from 200 to 600 °C. TRGO/Ti composites exhibited higher photocatalytic activity for the degradation of methylene blue in comparison with pure TiO2 due to the increase in specific surface area and the formation of π-π conjugations between dye compounds and aromatic regions of TRGO. However, increasing the calcination temperature resulted in the lower photoactivity and slower kinetics, which can be ascribed to the decrease in surface area, the reduction of oxygen vacancies, and the loss of functional groups at the edges or on the basal planes of the TRGO sheets.  相似文献   

2.
Two kinds of TiO2 with novel structures, interpenetrating anatase TiO2 tablets (IP-TiO2), and overlapping anatase TiO2 nanosheets (OL-TiO2) with exposed {0 0 1} facets, are synthesized. The graphene oxide (GO) supported ultrathin TiO2 nanosheets (OL-TiO2/GO) is also prepared by one-pot hydrothermal method. The microscopic feature, morphology, phase, and nitrogen adsorption–desorption isotherms are characterized. The performance of photocatalytic degradation of methyl blue is also measured. Compared with IP-TiO2, the OL-TiO2 with GO possess higher photocatalytic efficiency. The GO can improve the photocatalytic property by increasing specific surface area, accelerating the separation of electron–hole pairs, as well as extending the electron life. The growth process of TiO2 nanosheets on graphene oxide layers probably follows a step-growth mechanism with F as morphology controlling agent. The steps on the surface can improve the photocatalytic activity further due to the increase of dangling bonds of 5-coordinated Ti (Ti5c) which are considered to be the active sites in the photocatalytic reaction.  相似文献   

3.
《Ceramics International》2016,42(16):18257-18263
Novel photocatalysts based on silver (Ag), TiO2, and graphene were successfully synthesized by microwave-assisted hydrothermal method. The prepared photocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The influence of silver loading and graphene incorporation on photocatalytic hydrogen (H2) production of as-prepared samples was investigated in methanolic aqueous solution under visible light irradiation (λ≥420 nm). The results showed that Ag–TiO2/graphene composite had appreciably enhanced photocatalytic H2 production performance under visible light illumination compared to pure TiO2, Ag–TiO2 and TiO2/graphene samples. The enhanced photocatalytic hydrogen production activity of Ag–TiO2/graphene composite under visible light irradiation could be attributed to increased visible light absorption, reduced recombination of photogenerated charge carriers and high specific surface area. This novel study provides more insight for the development of novel visible light responsive TiO2− graphene based photocatalysts for energy applications.  相似文献   

4.
Graphene film was formed on the surface of titanium dioxide nanotube (TiO2 NT) arrays through in situ electrochemical reduction of a graphene oxide dispersion by cyclic voltammetry. The residual oxygen-containing groups and other structural defects such as sp3-hybridized carbons in the electrodeposited graphene were further removed by photo-assisted reduction of the underlying TiO2 NTs, thus achieving the maximum restoration of π-conjugation in the graphene planes. Spectroscopic, electrochemical, and photoelectrochemical techniques were used to characterize the graphene films, and the use of the resulting graphene–TiO2 NT material in photocatalysis was investigated. The results showed that the graphene–TiO2 NT material exhibited a greatly improved photocatalytic activity compared with unmodified TiO2 NTs.  相似文献   

5.
Nano graphene oxide (NGO) was produced by further refluxing graphene oxide (GO) sheets in HNO3, and carboxylic acid functionalized graphene oxide (GO–COOH) was obtained by a simple etherification reaction between GO and chloroacetic acid. The GO, GO–COOH and NGO sheets are combined with TiO2 nanorods by a two-phase assembling method, and confirmed by transmission electronic microscopy. The GO–TiO2, GO–COOH–TiO2 and NGO–TiO2 composites are used in a comparative study of photocatalytic H2 generation activity under UV light irradiation. The H2 generation rate of TiO2 nanorods was slightly increased from 15 to 30 mL h−1 g−1 by replacing oleic acid ligands with hydrophilic dopamine, and significantly increased to 105 mL h−1 g−1 after combining with GO sheets. The further comparative study shows that GO–COOH–TiO2 composite has higher H2 generation rate of 180 mL h−1 g−1 than that of GO–TiO2 and NGO–TiO2 composites.  相似文献   

6.
Highly efficient Eu-TiO2/graphene composites were synthesized by a two-step method such as sol-gel and hydrothermal process. The synthesized photocatalysts were characterized by XRD, TEM, XPS, UV–vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results confirmed that anatase Eu-TiO2 nanoparticles with average 10 nm sizes were successfully deposited on two-dimensional graphene sheets. The UV–visible spectroscopy showed a red shift in the absorption edge of TiO2 due to Eu doping and graphene incorporation. Moreover, effective charge separation in Eu-TiO2/graphene composites was confirmed by PL emission spectroscopy compared to TiO2/graphene, Eu-TiO2 and pure TiO2. The photocatalytic activity for H2 evolution over prepared composites was studied under visible light irradiation (λ ≥ 400 nm). The results demonstrate that photocatalytic performance of the photocatalysts for hydrogen production increases with increasing doping concentration of Eu upto 2 at%. However, further increase in doping content above this optimum level has decreased the performance of photocatalyst. The enhanced photocatalytic performance for H2 evolution is attributed to extended visible light absorption, suppressed recombination of electron-hole pairs due to synergistic effects of Eu and graphene.  相似文献   

7.
Porous ultrahigh‐molecular‐weight polyethylene (UHMWPE)‐based composites filled with surface‐modified Ce‐doped TiO2 nanoparticles (Ce–TiO2/UHMWPE) were prepared by template dissolution. The composites were characterized by Fourier transform infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, diffuse reflectance spectra, and scanning electron microscopy); the photocatalytic activity was also evaluated by the decomposition of methyl orange under UV exposure. The results demonstrate that the severe aggregation of Ce–TiO2 nanoparticles could be reduced by surface modification via a silane coupling agent (KH570). The Ce–TiO2/UHMWPE porous composites exhibited a uniform pore size. Doping with Ce4+ effectively extended the spectral response from the UV to the visible region and enhanced the surface hydroxyl groups of the TiO2 attached to the matrix. With a degradation rate of 85.3%, the 1.5 vol % Ce–TiO2/UHMWPE sample showed the best photocatalytic activity. The excellent permeability of the porous composites is encouraging for their possible use in wastewater treatment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
ABSTRACT

In this study, mesoporous CdO–graphene and mesoporous TiO2 were successfully synthesized using a facile method. The results indicated that photocatalytic activity can be enhanced with the combination of mesoporous CdO–graphene and mesoporous TiO2. The photocatalytic performance of the mesoporous CdO–graphene–TiO2 photocatalyst presents significantly improved photocatalytic activity of safranine O, reactive black B, and GA due to the improvement of the surface area and the small average pore size distribution of the as-prepared mesoporous CdO–graphene–TiO2. The photodegradation rate was optimized by safranine O at a pH solution of 11 and by GA at the dosage amount of 0.07 g photocatalyst.  相似文献   

9.
Graphene oxide (GO), tungsten trioxide (WO3) and graphene–WO3 nanobelt composites (GW) were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV–vis diffuse reflection spectra (DRS) and X-ray photoelectron spectroscopy (XPS) valence band spectra. We demonstrated that the graphene can elevate the conduction band of WO3 toward photocatalytic reduction of CO2 into hydrocarbon fuels under visible-light irradiation. And the photocatalytic activity of GW is higher than that of GO, WO3 and P25 TiO2.  相似文献   

10.
Graphene as a well-known electron cocatalyst can enhance the hydrogen-production performance of photocatalysts due to its excellent conductivity. For highly efficient graphene-modified TiO2 photocatalyst, besides the speedy electron transfer via graphene, it is significant to raise the interfacial hydrogen-generation reaction rate on the graphene surface. In this paper, thiourea (TU) can covalently functionalize graphene and act as effective H+-adsorbed active sites to improve the hydrogen-production efficiency of graphene-modified TiO2 (TiO2/rGO-TU). The TiO2/rGO-TU sample was successfully prepared by a facile nucleophilic substitution reaction between the thiol (-SH) of thiourea and carboxyl (-COOH) of graphene. The TiO2/rGO-TU could possess the maximum H2-generation rate of 241.83 μmol h?1 g?1, which was 2.33 and 6.60 times greater than that of TiO2/rGO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-TU can be ascribed to the synergistic effect of graphene and thiourea, namely, the graphene functions as a cocatalyst to capture the photoexcited electrons of TiO2 and the thiourea acts as effectual H+-adsorbed active sites to promote interfacial hydrogen generation. This study presents a feasible strategy for developing grephene-based photocatalysts for prospective applications in the hydrogen-production field.  相似文献   

11.
The photocatalytic water splitting into hydrogen and oxygen using solar light is a promising method to provide clean energy carriers in the future. Herein we report on an experimental investigation of TiO2 nanotubes (NTs) modified with electrochemically reduced graphene oxide (ERGO) for photoelectrochemical water splitting. A photocurrent density of 1.44 mA cm−2 at 1.23 V vs. RHE has been achieved for ERGO–TiO2 NTs photoanode under standard reporting conditions, i.e., simulated AM 1.5G sunlight (intensity 100 mW cm−2), which is notably increased by ∼140% compared to the bare TiO2 NTs. This efficiency is nearly ten times higher than that of the P25 nanoparticles based device. The enhanced photocurrent densities can be attributed to the reduced graphene oxide and Ti3 + self-doping produced by an electrochemical reduction treatment. The ERGO modified photoanodes show excellent stability during light soaking under full sunlight.  相似文献   

12.
Thermal decomposition of titanium(IV) tetra-tert-butoxide (TTB) in inert organic solvents at 573 K yielded microcrystalline anatase (titanium(IV) oxide, TiO2) powders with a crystallite size of ca. 9 nm and a surface area of <100 m2 g-1. Primary and secondary alkoxides of titanium(IV), however, were not decomposed under similar conditions, indicating that the thermal stability of C-O bonds in the alkoxides was a decisive factor for their decomposition. The TiO2 prepared from TTB by this manner was thermally stable upon calcination in air and retained high surface area of ca. 100 m2 g-1 even after calcination at 823 K. The as-prepared TiO2 powders, without calcination, exhibited much higher rate of carbon dioxide formation than any other active photocatalysts such as Degussa P-25 and Ishihara ST-01 in the photocatalytic mineralization of acetic acid in aerated aqueous solutions. The higher activity of the present TiO2 photocatalysts is attributed to both high crystallinity and large surface of the present product. The calcination of the as-prepared TiO2 in air reduced the photocatalytic activity, but it was still higher than the other commercially available TiO2's. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Nitrogen-doped TiO2 (TiO2?xNy) nanoparticles with and without adding Sm3+ were synthesized by thermohydrolysis of TiCl3. The samples were characterized by X-ray diffraction, specific surface area determination, UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the sample was investigated by employing the oxidative destruction of nitric oxide as a probe reaction using a flow reactor. Although the doping of Sm3+ in the lattice of titania was not useful to improve the photocatalytic activity, loading of samarium oxides on the surface of titania resulted in an improvement of the photocatalytic activity of the nitrogen-doped TiO2. The beneficial effect was explained by an increased separation efficiency of the photogenerated electron–hole pairs.  相似文献   

14.
SrTiO3-graphene nanocomposites were prepared via photocatalytic reduction of graphene oxide by UV light-irradiated SrTiO3 nanoparticles. Fourier transformed infrared spectroscopy analysis indicates that graphene oxide is reduced into graphene. Transmission electron microscope observation shows that SrTiO3 nanoparticles are well assembled onto graphene sheets. The photocatalytic activity of as-prepared SrTiO3-graphene composites was evaluated by the degradation of acid orange 7 (AO7) under a 254-nm UV irradiation, revealing that the composites exhibit significantly enhanced photocatalytic activity compared to the bare SrTiO3 nanoparticles. This can be explained by the fact that photogenerated electrons are captured by graphene, leading to an increased separation and availability of electrons and holes for the photocatalytic reaction. Hydroxyl (·OH) radicals were detected by the photoluminescence technique using terephthalic acid as a probe molecule and were found to be produced over the irradiated SrTiO3 nanoparticles and SrTiO3-graphene composites; especially, an enhanced yield is observed for the latter. The influence of ethanol, KI, and N2 on the photocatalytic efficiency was also investigated. Based on the experimental results, ·OH, h+, and H2O2 are suggested to be the main active species in the photocatalytic degradation of AO7 by SrTiO3-graphene composites.

PACS

61.46. + w; 78.67.Bf; 78.66.Sq  相似文献   

15.
Solvothermal decomposition of titanium(IV) tert-butoxide (TTB) in toluene at 573 K in the presence of silica gel (SiO2) with continuous stirring yielded a titanium(IV) oxide (TiO2)–SiO2 composite in which agglomerates of nanocrystalline TiO2 were deposited on the surfaces of SiO2 particles. Various TiO2–SiO2 composites having different TiO2 contents can be synthesized by changing the ratio of TTB and SiO2, and the composites had large surface areas corresponding to porous properties of SiO2. These TiO2–SiO2 composites were used for photocatalytic removal of nitrogen oxides in air and their photocatalytic performances were compared with those of other TiO2–SiO2 samples prepared by different methods. Solvothermally synthesized 74 wt.%TiO2–SiO2 composite exhibited excellent photocatalytic performance (almost stoichiometric removal of NO x (98%) and very low NO2 release (0.3%)) attributable to high photocatalytic activity of TiO2 and high adsorption property of SiO2. Lesser performance of 74 wt.%TiO2–SiO2 composites prepared by other methods suggested that pore-mouth plugging of SiO2 by TiO2 and lower level of mixing of TiO2 and SiO2 decreased photocatalytic performance of the composites.  相似文献   

16.
A novel nanoscale GR–Nd/TiO2 composite photocatalyst was synthesized by the hydrothermal method. Its crystal structure, surface morphology, chemical composition and optical properties were studied using XRD, TEM, and XPS, DRS and PL spectroscopy. It was found that graphene and neodymium modification shifts the absorption edge of TiO2 to visible-light region. The results of photoluminescence (PL) emission spectra show that GR–Nd/TiO2 composites possess better charge separation capability than do Nd/TiO2 and pure TiO2. The photocatalytic activity of prepared samples was investigated by degradation of methyl orange (MO) dye under visible light irradiation. The results show that the GR–Nd/TiO2 composite can effectively photodegrade MO, showing an impressive photocatalytic activity enhancement over that of pure TiO2. The enhanced photocatalytic activity of the composite catalyst might be attributed to the large adsorptivity of dyes, extended light absorption range and efficient charge separation due to Nd doping and graphene incorporation.  相似文献   

17.
TiO2 particles were prepared by chemical vapor condensation and used to synthesize MnOx/TiO2 mesoporous materials by impregnation. The Mn-doped TiO2 particles were smaller (8.5?nm vs. 10.5?nm) and had greater surface areas (203.7?m2?g?1 vs. 134.4?m2?g?1) than undoped particles. They were also smaller and had a greater surface area than similarly doped commercial P25, indicating highly dispersed Mn species on the surfaces of the crystalline TiO2. The resulting materials?? photocatalytic activities towards methylene blue decomposition were compared: the synthesized TiO2 particles with MnO2 showed higher photocatalytic activity than the similarly doped commercial P25.  相似文献   

18.
《Ceramics International》2020,46(5):5887-5893
The interfacial interaction between graphene and semiconductors significantly affects volatile organic compound (VOC) adsorption and charge separation. Herein, we optimize the interaction between TiO2 and reduced graphene oxide (rGO) by reducing the Fermi level of GO with Cu2+. The surface photocurrent (SPC) and surface photovoltage (SPV) of the prepared materials were tested under different atmospheres to study the effect of enhanced interfacial interactions on charge separation. The results revealed that Cu2+ treatment tended to induce the TiO2 nanoparticles to form a thicker and more uniform layer on the rGO surface. The composition of TiO2 nanoparticles and rGO generated a 2D arranged porous structure that had both hydrophobic rGO and hydrophilic TiO2 as the pore walls. The amount of adsorbed toluene for the optimized TiO2-graphene (t-TiO2/rGO) was 1.21-fold higher than that for TiO2/rGO. The SPC and SPV results showed that the optimized contact between TiO2 and rGO significantly enhanced photogenerated electron mobility and toluene-induced hole utilization. Given the advantages in adsorption and charge separation, the photocatalytic reaction rates of t-TiO2/rGO were 1.47-fold and 1.91-fold higher than those of TiO2/rGO and porous TiO2, respectively.  相似文献   

19.
In this study novel material PbS–graphene/TiO2 composites were prepared by sol–gel method. The “as-prepared” composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and Raman spectroscopic analysis. The photocatalytic activities were investigated by the degradation of methylene blue (MB) as a standard dye. We observed that coupling of PbS with TiO2 extends the photoresponse to visible region. This revealed that the excellent photoinduced charge separation abilities and transport properties of graphene make these hybrids as potential candidates for developing high-performance next-generation devices.  相似文献   

20.
A hydrothermal method for the synthesis of reduced graphene oxide/titanium dioxide filter (RGO/TiO2) and reduced graphene oxide/zinc oxide filter (RGO/ZnO) by using polypropylene (PP) porous filter is reported. Field emission scanning electron microscopy illustrated that the nanoparticles were uniformly distributed on the reduced graphene oxide nanosheets. Flexural tests showed that the physical properties of the modified filters have greater strength than the original filter. Thermogravimetric analysis revealed that the thermal property of the modified filters is the same as that of the original filter. Under a halogen lamp, the modified filter exhibited excellent photocatalytic degradation of methylene blue. The RGO/TiO2 filter maintained its ability to degrade MB efficiently, even after five cycles of photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号