首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate a pH-mediated fine-tuning method for the transmittance and optical properties of graphene oxide membranes (GOMs) which are assembled at liquid/air interface starting from graphene oxide (GO) hydrosols. The transmittance of GOM continuously decreases with the increase of the pH value of the parent hydrosol. The size and surface chemistry of GO nanosheets are discussed to how to influence the transmittance of GO hydrosol and the optical properties of the resulting membrane since a size classification occurs in acidic condition and a deoxygenate reaction is initiated by basic environment. This study indicates an easy strategy for precisely adjusting the optical properties of graphene-based membrane, which is very important for developing novel optical devices.  相似文献   

2.
毛东阳  杨丹  范杰平 《化工学报》2020,71(6):2900-2911
采用改进的Hummers法,通过冷冻干燥制备了氧化石墨烯(GO)。以辛弗林盐酸盐为模板分子,水溶性的丙烯酰胺为功能单体,离子液体(溴代1-丁基-3-甲基咪唑)为致孔剂,把GO加入聚合液中,制备了GO杂化的分子印迹复合膜(GO-MIM)。利用透射电镜、扫描电镜、X射线衍射和红外光谱等方法对GO及GO-MIM进行了表征。通过将分子印迹膜技术与GO相结合,明显提高了分子印迹膜的力学性能。吸附及渗透实验表明,GO-MIM可在纯水溶剂体系,对辛弗林盐酸盐具有很好的选择性吸附能力和优先透过能力,体现了明显的分子印迹效果。  相似文献   

3.
The results of measurements of XPS spectra and magnetic properties of powder graphene/Co composite prepared by hydrogen reduction of CoCl2·6H2O deposited on few-layers graphene matrix are presented. XPS Co 2p measurements show two sets of 2p3/2,1/2-lines belonging to oxidized and metallic Co-atoms. This means that metal in composite is partly oxidized. This conclusion is confirmed by magnetic measurements which show the presence of the main (from the metal) and shifted (from the oxide) hysteresis loops. The presence of oxide layer on the metal surface prevents the metal from the full oxidation and (as shown by magnetic measurements) provides the preservation of ferromagnetic properties after long exposure in ambient air which enables the use of graphene/metal composites in spintronics devices.  相似文献   

4.
5.
There is a need for developing reliable models for water and solute transport in graphene oxide (GO) membranes for advancing their emerging industrial water processing applications. In this direction, we develop predictive transport models for GO and reduced-GO (rGO) membranes over a wide solute concentration range (0.01–0.5 M) and compositions, based on the extended Nernst–Planck transport equations, Donnan equilibrium condition, and solute adsorption models. Some model parameters are obtained by fitting experimental permeation data for water and unary (single-component) aqueous solutions. The model is validated by predicting experimental permeation behavior in binary solutions, which display very different characteristics. Sensitivity analysis of salt rejections as a function of membrane design parameters (pore size and membrane charge density) allows us to infer design targets to achieve high salt rejections. Such models will be useful in accelerating structure-separation property relationships of GO membranes and for separation process design and optimization.  相似文献   

6.
7.
Polymer electrolyte membranes have been widely investigated for high performance fuel cells. Here, we report the synthesis of ionic conductive Nafion/graphene oxide (GO) composite membranes for application in direct methanol fuel cells. GOs interact with both the non-polar backbone and the polar ionic clusters of Nafion because of their amphiphilic characteristics attributable to hydrophobic conjugation and hydrophilic functional groups. Accordingly, GO sheets serve to modify the microstructures of two domains of Nafion. In particular, the transport properties of Nafion are favorably manipulated by the incorporation of GO. This modulated the ionic channels of Nafion and decrease methanol crossover while preserving ionic conductivity. Furthermore, strong interfacial interactions due to the insertion of GO nanofillers into the Nafion matrix improve the thermal and mechanical properties of the material. In particular, we exploit Nafion/GO composite membrane as electrolyte material for direct methanol fuel cell (DMFC) in order to resolve current issue of methanol crossover. This composite membrane-based DMFC compared to the Nafion 112-based DMFC remarkably enhanced cell performance, especially in severe operating conditions.  相似文献   

8.
We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.  相似文献   

9.
10.
Intercalated laminar membrane with controllable interlayer spacing (d-spacing) is one of the most effective membranes for fast molecule separation. In this work, we demonstrate a versatile strategy to create nanosheet-templated water channels in laminar graphene oxide (GO) membranes. The 1.2 nm-thick nickel hydroxide nanosheets as sacrificed intercalators provide a chance to control the d-spacing. The resultant membranes have controllable channels and exhibit over six times higher water permeance than the unintercalated membrane. The 880 nm-thick nanosheet-templated GO (NST-GO) membrane has accurate d-spacing of about 1.14 nm and shows high water permeance of 120.3 L m−2 h−1 bar−1 and good molecule separation property, reflecting in high rejection for larger dyes (90.1% for erythrosine B [EB]), while low rejection for smaller dyes (58.3% for methylene blue [MB]). Furthermore, this strategy of intercalating and sacrificing nanosheets has higher potential than traditional intercalation in controlling d-spacing of laminar membranes.  相似文献   

11.
The mechanical properties of free-standing graphene oxide (GO) films were investigated using nanoindentation on a dynamic contact module (DCM) system. The Young's modulus, stiffness, and ultimate strength of thin films were evaluated. Nanoindentation measurements were combined with the DCM to evaluate the mechanical properties of thin films and to predict the crack length and critical energy. Electrophoretically deposited GO film, 50 ~ 60 nm in thickness, was found to have a Young's modulus of 695 ± 53 ~ 697 ± 15 GPa. The critical energy values for 50- and 60-nm-thick films were 0.142 ~ 0.201 and 0.479 ~ 0.596 J/m2, respectively. Nanoindentation combined with the DCM can thus be used to obtain the mechanical properties and critical energy of thin films.  相似文献   

12.
李智超  郑瑜  张润楠  姜忠义 《化工学报》2022,73(6):2370-2380
水资源短缺与水污染是21世纪人类面临的共同挑战之一。膜技术具有低能耗和低成本等优点,是一种绿色高效的水处理技术。氧化石墨烯具有分子级的厚度和优异的化学稳定性,是一种优异的二维膜材料,在水处理膜领域具有重要应用前景。综述了氧化石墨烯膜在水处理领域的研究进展,针对膜技术面临的通量低和膜污染的挑战,以氧化石墨烯膜通道和表面构建中的介尺度问题为重点,探讨了不同尺度插层材料对氧化石墨烯膜通道结构与分离性能的影响,并分析了氧化石墨烯膜抗污染表面构建策略及对不同尺度污染物的抗污染机制。最后,对高通量抗污染氧化石墨烯膜研究进行了总结和展望。  相似文献   

13.
为了解决氧化石墨烯(GO)纳米片层在水泥基体中的分散问题,制备了丙烯酸(AA)、丙烯酰氧乙基三甲基氯化铵(AAC)和丙烯磺酸钠(SAS)的共聚物(PAAS),PAAS与GO纳米片层形成PAAS/GO复合物并显示出分散作用。结果表明,w(PAAS)=2%分别与w(GO)=0.01%、0.02%和0.03%形成的复合物可使水泥基体分别形成由花状晶体、多面体状晶体和针状晶体构成的规整有序的微观结构,28 d时的抗折强度分别比对照样提高了63.0%、90.4%和87.9%,抗压强度分别提高了32.6%、74.2%和71.3%,同时这些水化晶体容易生长在裂缝、孔洞等缺陷处,具有修复结构缺陷的效果。PAAS通过与GO纳米片层形成复合物实现了GO在水泥基材料中的均匀分散以及对水泥基材料微观结构和性能的调控。  相似文献   

14.
We present the study on the structure and adsorption properties of reduced graphene oxide subjected to thermal treatment in temperature range of 1100–2000 °C under flowing argon. The morphology and composition analyses reveal that the defective carbon materials remaining after volatilization of oxygen and hydrogen rearrange into highly ordered hexagonal carbon layers during thermal treatment at 2000 °C. The surface area of the resulting carbon layers increases to a value more than fourfold over that of the starting precursor materials. These results offer useful insights to understand the thermal behavior of the carbonaceous decomposition materials.  相似文献   

15.
This study reports contact angle measurements of standard, diol and aromatic solvents on graphene oxide thin films thermally reduced in ultra-high vacuum up to 900 °C. The films were chemically and morphologically characterized using respectively X-ray photoemission spectroscopy and atomic force microscopy. The characterization shows that the wetting occurs in the chemically heterogeneous regime, namely the surface roughness (3 nm) does not influence the wetting properties of the samples. Zisman, Owens–Wendt and Neumann methods have been applied in order to calculate the surface free energy of the thin films showing that the Owens–Wendt method best fit the data trends. The surface free energy varies from 51 mN/m (pristine graphene oxide) to 39 mN/m (900 °C reduced graphene oxide). A correlation between the surface chemical composition, the surface free energy and its polar and dispersive components is reported, giving a rationale to the wetting properties of graphene oxide and reduced graphene oxide.  相似文献   

16.
We present the electronic structure evolution from graphite oxide to thermally reduced graphite oxide. Most functional groups were removed by thermal reduction as indicated by high resolution X-ray photoelectron spectroscopy, and the electrical conductivity increased 6 orders compare with the precursor graphite oxide. X-ray absorption spectroscopy reveals that the thermally reduced graphite oxide shows several absorption peaks similar to those of pristine graphite, which were not observed in graphite oxide or chemically reduced graphite oxide. This indicates the better restoration of graphitic electronic conjugation by thermal reduction. Furthermore, the significant increased intensity of Raman 2D band of thermally reduced graphite oxide compared with graphite oxide also suggests the restoration of graphitic electronic structure (π orbital). These results provide useful information for fundamental understanding of the electronic structure of graphite oxide and thermally reduced graphite oxide.  相似文献   

17.
翟倩楠  冯树波 《化工进展》2020,39(10):4061-4072
石墨烯具有卓越的力学、电学、热学和阻隔性能,但疏水性、生物不相容性等缺点限制了其在诸多方面的应用。氧化石墨烯(GO)为石墨烯的衍生物,是一种新型的碳材料,边缘处具有羧酸官能团并且其表面含有羟基和环氧基团,具有良好的分散性、双亲性、生物相容性等性能,被视当代最具有发展前景的碳材料之一。本文简述了氧化石墨烯的结构模型、制备方法和官能团可控氧化石墨烯的制备,介绍了氧化石墨烯的性能和的应用进展,分析了氧化石墨烯在制备和应用方面的一些不足。最后,阐述了石墨烯未来面临的挑战以及潜在的发展前景。  相似文献   

18.
徐寒松 《聚酯工业》2021,34(2):13-19
将氧化石墨烯(GO)与精对苯二甲酸(PET)、乙二醇(EG)进行原位聚合,制备了氧化石墨烯/PET(GO/PET)复合材料,研究了氧化石墨烯对PET聚酯的热性能、结晶性能的影响,并制备复合材料纤维,测试了其力学性能.结果表明:GO的加入提高了PET的热稳定性、结晶温度及结晶速率但没有改变PET的成核方式和生长方式.与纯PET相比,加入GO后纤维的拉伸强度降低,断裂伸长率提高,但与低GO含量的PET纤维相比,GO含量较高的PET纤维的拉伸强度更高.  相似文献   

19.
20.
In the present study, graphene oxide (GO) was incorporated into poly(vinylidene fluoride) (PVDF) and chemically modified PVDF (M‐PVDF) to prepare mixed matrix membranes (MMMs) for gas separation application. Performed analyses proved appropriate dispersion of exfoliated GO sheets in polymer matrices and sufficient compatibility at the interfacial phases. M‐PVDF based MMMs were thermally and mechanically more stable relative to the PVDF‐based MMMs. The oxygen containing functional groups in M‐PVDF was probably the main reason for this more stability. PVDF/GO MMMs rendered low gas permeability and high selectivity. Both impermeable GO sheets and crystalline phases of PVDF were responsible for such behavior. On the other hand, interestingly gas permeability of M‐PVDF/GO MMMs was enhanced while no substantial decline was recorded in gas selectivity. For instance, He and CO2 permeability was increased 12.46% and 25.89%, respectively, compared to the pure PVDF membrane. This behavior originated from functional groups of M‐PVDF and the interaction of these groups with GO sheets. Since GO often amplified gas barrier properties of polymers, such increscent would be appreciable. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46271.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号