首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotube (CNT) emitter on the flexible substrate was developed by simple printing of CNT composite containing spin on glass (SOG) on indium tin oxide (ITO) coated polyethylene terephthalate (PET) film and heat treatment at 150 °C. Mixture of terpineol and binder polymer such as ethyl cellulose and acryl was used as an organic vehicle in CNT composite. Si and O atoms from SOG were uniformly dispersed and formed silica bonding in CNT composite after heat treatment at 150 °C. Adhesion between CNT composite and the PET substrate was excellent. Turn-on electric field of CNT emitter was 2.9 V/μm. Sheet resistance of CNT composite was about 30 Ohm/sq.  相似文献   

2.
We report the effects of oxygen doping on the electrical properties of defective metallic and semiconducting single-walled carbon nanotube bundles. Carbon vacancies are generated by electron beam knock-out process. The carbon nanotube bundles are placed on top of suspended electrodes produced on a through-hole chip. This allows a physical correlation to be established for transmission electron microscopy inspection and electrical characterization. The dangling carbon bonds of the vacancies are very active and can easily adsorb oxygen molecules. In terms of the semiconducting bundles, oxygen bonding lowers the bandgap and the original p-type bundles thereby modifying them to become bi-polar. For the metallic bundles, a hysteretic bi-stable state in gate-voltage cycling is observed; this is attributed to the electrically controlled dipole field of the oxygen molecules.  相似文献   

3.
Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al(2)O(3) catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp(2)/sp(3) ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.  相似文献   

4.
We show that the yield of single-walled carbon nanotubes (SWCNTs) grown with bimetallic catalysts is a strong function of their atomic-scale composition. A series of compositionally-tuned NixFe1?x bimetallic catalysts with a constant mean diameter of 2.0 nm are used to catalyze the growth of nanotubes via a floating catalyst method. Increasing the Fe content in the catalysts is found to lower the fraction of SWCNTs in the collected as-grown product. Based on a simple surface-to-volume model, these results are explained by the higher carbon solubility of Fe compared to Ni which results in a larger amount of carbon precipitation and the formation of multi-walled tubes when the nanotubes are nucleated from catalysts with high Fe content. Overall, our study demonstrates that the size and composition of bimetallic catalysts must be precisely controlled to obtain high yields of SWCNTs for large-scale production.  相似文献   

5.
Random network single-walled carbon nanotube (SWNT)-based thin film transistors show excellent properties in sensors, electronic circuits, and flexible devices. However, they exhibit a significant amount of hysteresis behavior, which should be solved prior to use in industrial applications. This paper provides optimum conditions for the growth of random network SWNTs and reveals that the observed hysteresis behavior originates from the charge exchange between the SWNTs and the dielectric layer rather than from changes in the intrinsic properties of the SWNTs. This was proven by studying the conditions of stepwise gate sweep experiments and time measurements. This paper also shows that top gate SWNT thin film transistors (TFTs) with an SU-8 dielectric layer could provide a practical solution to the hysteresis problem for SWNT TFTs in electronic circuit applications.  相似文献   

6.
Chad J. Unrau 《Carbon》2010,48(5):1418-10435
Composite catalysts are employed for high yield gas-phase synthesis of single-walled carbon nanotubes (SWCNTs). Specifically, silicon is investigated as an additive to iron catalysts for synthesis of SWCNTs in inverse diffusion flames. While silicon is often used as a substrate in supported-catalyst processes to promote nanotube growth, this study demonstrates that it can also be beneficial for gas-phase nanotube synthesis in diffusion flames. An oxy-fuel ethylene inverse diffusion flame is employed to provide a soot-free, carbon-rich environment for nanotube growth. Iron and silicon precursors are added to the fuel stream for nucleation of iron/silicon/oxygen catalyst particles, with the amount of particle oxidation determined by the amount of oxygen-enrichment and fuel dilution at a given temperature. Under optimum conditions, nearly 90% of the catalyst particles produce single-walled carbon nanotubes as compared to less than 10% when the catalyst consists of only iron and oxygen. The effect of silicon addition is investigated through variation of the iron/silicon ratio and measurement of nanotube growth rates. Silicon is shown to primarily affect SWCNT inception with minimal influence on growth rate.  相似文献   

7.
Su Y  Du J  Pei S  Liu C  Cheng HM 《Nanoscale》2011,3(11):4571-4574
High quality patterning of single-walled carbon nanotube (SWCNT) transparent conductive films is achieved by a lift-off aluminum interlayer method, which has the advantage of resulting in contamination-free and damage-free SWCNTs. The obtained patterns preserve the electrical properties of the SWCNT films and show promising applications in flexible high frequency electronic and display devices.  相似文献   

8.
Han ZJ  Levchenko I  Yick S  Ostrikov KK 《Nanoscale》2011,3(11):4848-4853
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.  相似文献   

9.
Sang Soo Han 《Carbon》2004,42(11):2169-2177
The density functional theory (DFT) has been used to simultaneously investigate physi-/chemi-sorption properties of hydrogen on the (10,0) single-walled carbon nanotube (SWCNT) walls. Physisorption of H2 outside the CNT with a vertical orientation to the tube axis above the center of a hexagon surface is the most stable state of physisorption and its binding energy is very weak, −0.792 kcal/mol. In the chemisorption of two hydrogen atoms the most stable state is above two adjacent carbon atoms of a hexagon with a C-H bond length of 1.10 Å and one C-H bond energy of −45.761 kcal/mol. Based on these results, we have also investigated the transition state and the reaction pathway from physisorption to chemisorption of hydrogen on the CNT. The energy barrier of the reaction from physisorption to chemisorption is about 78.837 kcal/mol and the reaction is not spontaneous at 0 K. Through the calculations of the Gibbs free energy change from physisorption to chemisorption with temperatures, we learned that it is not easy for the reaction to occur, which is a major obstacle for the practical use of the CNT as a hydrogen storage medium.  相似文献   

10.
Carbon vacuum arc was used to deposit 5–25 nm thick carbon coatings on single-walled carbon nanotube (SWCNT) networks. The SWCNT bundles thus embedded in conformal coatings maintained their optical transparency and electrical conductivity. Sheet resistances of the networks were measured during the vacuum arc deposition, revealing initially a 100-fold increase, followed by significant recovery after exposing the samples to an ambient atmosphere. Nanoindentation measurements revealed improved elasticity of the network after applying the carbon coating. Pristine SWCNT networks were easily deformed permanently, but a 20 nm carbon coating strengthened the nanostructure, resulting in a fully elastic recovery from a 20 μN load applied with a Berkovich tip. In nano-wear tests on selected areas, the coated SWCNT maintained its networking integrity after two passes raster scan at loads up to 25 μN. On the other hand, the pristine networks were badly damaged under a 10 μN scan load and completely displaced under 25 μN. Raman and electron energy loss spectroscopies indicated the carbon coating on bundles to be mainly sp2 bonded. Finite element modeling suggests that the low content of sp3 bonds may be due to heating by the intense ion flux during the plasma pulse.  相似文献   

11.
A decrease of nanotube yield is usually observed at high temperature. Here, we report on the origins of the activation and deactivation of the SWCNT growth in this high temperature range (between 700 °C and 850 °C) based on in situ Raman measurements. We observed that, at high temperature, carbon precursors such as ethanol and methane readily reduce metal oxide such as Co3O4. Once reduced, the size distribution of the catalyst particles quickly evolves at high temperature leading to a dramatic deactivation of the nanotube growth. An oxidizing pre-treatment has a stabilizing effect on the catalyst. In addition, we evidenced a threshold partial pressure of the carbon precursor to initiate the growth. This threshold partial pressure sets a second requirement for activating the nanotube growth in addition to the requirement of reducing the catalyst.  相似文献   

12.
Actuators were developed using activated and non-activated multi-walled carbon nanotube (MWCNT)–ionic liquid (IL) gel electrodes and compared to a single-walled carbon nanotube (SWCNT)-based actuator with respect to the electrochemical and electromechanical properties. The activated MWCNT–COOH/polymer actuator surpassed the SWCNT/polymer actuator in terms of the generated strain.  相似文献   

13.
An inorganic electroluminescent (EL) device on a flexible polyethylene terephthalate (PET) substrate and its properties were investigated. The transparent conducting film (TCF) made from carbon nanotubes (CNTs) (CNT-TCF) was employed in the flexible EL device. CNT-TCF was formed by filtration of CNT solution and was transferred to the PET film. It was found that the brightness of the inorganic EL device was strongly dependent on the quality of the CNT composite films. After a 3-aminopropyltriethoxysilane treatment of the PET substrate, CNTs uniformly were dispersed and showed a good adhesion to the substrate, and the resulting EL device showed better performance. The flexible EL device showed the brightness of 96.8 cd/m2 at 28 kHz and 50 V.  相似文献   

14.
We report the very rapid growth of carbon nanotubes (CNTs) at high temperatures that can be tolerated by glass substrates. Glass substrates with metal microelectrodes and sputtered catalysts are heated by a pulsed current in a chemical vapour deposition gas environment for 0.5–1 s to synthesize CNTs of several micrometres in height without damaging the glass substrate. CNTs with structures from single-walled to multi-walled and morphologies from entangled networks to vertically aligned forests are grown simply by changing the nominal thickness of the catalyst, and such CNTs grown selectively on the microelectrodes worked as field emitters for cathodoluminescence. Rapid, easy growth of patterned CNT arrays on glass substrates without using furnaces/heaters or vacuum pumps will be useful for various applications of CNTs.  相似文献   

15.
We investigated the production of the graphite contained in the soot of single-walled carbon nanotubes (SWCNTs) synthesized using the arc discharge method with a poorly graphitized carbon (PGC) rod in comparison to a graphite rod. A PGC rod was produced using a mixture of coal tar and carbon black and was heat treated to 1000 °C. The rod was packed with a mixture of iron (Fe), nickel (Ni), sulfur (S), and PGC and used for the production of SWCNT soot using arc discharge. From the results of X-ray diffraction and electron microscopy, the amount of graphite in the SWCNT soot synthesized by PGC rod was lower than that by graphite rod. The production of graphite in the soot was found to be dependent on the carbon structure of the anode and the current density of arc discharge.  相似文献   

16.
The effect of titanium (Ti) added to the top layer of an aluminum (Al)/iron (Fe)/Al (bottom) sandwich catalytic substrate was studied. The Ti caused a significant lengthening in the single-wall carbon nanotube forest produced by chemical vapor deposition (CVD). In general, particles of iron oxide on the Al/Fe/Al catalytic substrate are formed by exposure to the atmosphere during deposition process of the substrate. The particles of iron oxide are metalized during pretreatment under a reductive gas before the growth of the nanotubes with nano-sized dispersion stabilized. On this process, the metallization and the stabilization of nano-sized iron oxide particles occur on the basis of the oxygen affinity in the top aluminum oxide layer, with the ionization tendency Al > Fe. It is thought that the addition of Ti increases the oxygen affinity of the catalytic substrate, since Ti has a stronger ionization tendency than Al. After optimizing the quantity of Ti added to the top layer, we successfully fabricated a millimeter-long, small-diameter, single-wall carbon nanotube forest.  相似文献   

17.
Tae Jae Lee  Haiwon Lee  Jung Woo Lee 《Carbon》2010,48(5):1473-1479
Single-walled carbon nanotube (SWCNT) three-dimensional (3-D) networks were first fabricated in the pores of a porous silicon substrate using thermal decomposition of C2H2 at 800 °C. Catalyst nanoparticles were uniformly distributed on the inner wall surfaces of the pores using a dipping method combined with ultrasonication. SWCNTs were synthesized along the inner wall surface of the pores, and spanned it. The suspended SWCNTs inside the pores formed 3-D networks in the results of the chaotic overgrowth of SWCNTs in a confined space under thermal vibration, and van der Waals interactions between SWCNTs.  相似文献   

18.
The grand vision of next generation electronics is expected to realize via the wholescale industrialization of organic devices. However, one serious obstacle hindering the practical application for organic devices is their instability regardless of it induced by high temperatures or sustained gate bias stress. Herein, pentacene-based thin-film transistors (TFTs) with both good heat resistance and high electrical stability were realized. The TFTs, where fluorinated polyimide (ODA–6FDA PI) and a silicon dioxide (SiO2) bilayer are used as gate dielectric, exhibit superior electrical stability under protracted gate bias stress for 150 min (ΔVth ~1 V with voltage range of 30 to −60 V) and are extremely less susceptible to annealing treatment for temperatures up to 150 °C (Δμ/μ0 ~2.9%), as compared to counterparts with a single dielectric layer. We demonstrated that the excellent bias-stress stability arises from the higher activation energy of defects of fluorinated PI surface based on exponential barrier distribution model and the suppression of charge injection and back-channel effect via bilayer. Also, the superior thermal stability is ascribed to the restraint of film cracks and phase transformation of pentacene at high temperatures induced by the better match between the thermal expansion coefficients of semiconductor and dielectric. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47013.  相似文献   

19.
Huaping Liu  Shohei Chiashi 《Carbon》2010,48(1):114-15680
Single-walled carbon nanotubes (SWCNTs) have been directly grown on a SiO2 substrate using the chemical vapor deposition (CVD) of ethanol without a catalyst. Care was taken to exclude the possibility that the SWCNT growth was induced by conventional metal catalysts such as Fe, Co and Ni resulting from the contamination. Pretreatment of the SiO2 at 950 °C or a higher temperature in H2 before CVD was critical for the synthesis of SWCNTs. After CVD process, nano-scale carbon particles were produced besides SWCNTs. Based on these results, we propose that the annealing of SiO2 substrates in H2 at high temperature generates defects on their surfaces, and these defects provide nucleation sites for the formation of carbon nanoparticles and assist the formation of carbon nanocaps, thus leading to the SWCNT growth.  相似文献   

20.
Chemical vapor deposition growth of single-walled carbon nanotubes (SWCNTs) was studied using three representative carbon source sources: CO, ethanol, and methane, and a catalyst of Ni ions incorporated in MCM-41. The resulting SWCNTs were compared for similar reaction conditions. Carbon deposits were analyzed by multi-excitation wavelength Raman, TGA, TEM and AFM. Catalytic particles in the Ni-MCM-41 catalysts were characterized by TEM and synchrotron light source X-ray absorption spectroscopy. Under similar synthesis conditions, SWCNTs produced from CO had a relatively smaller diameter, while those from ethanol had a larger diameter. Methane could not produce SWCNTs on Ni-MCM-41 under the conditions used in this research. These results demonstrate that three carbon sources affect the dynamic balances between metallic cluster formation and carbon deposition/precipitation on the metallic cluster surface. Controlling SWCNT diameter relies on precisely regulating this dynamic process. Using different carbon sources we are able to shift this dynamic balance and produce SWCNTs with different mean diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号