首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-walled carbon nanotube (SWCNT) random networks are easily fabricated on a wafer scale, which provides an attractive path to large-scale SWCNT-based thin-film transistor (TFT) manufacturing. However, the mixture of semiconducting SWCNTs and metallic SWCNTs (m-SWCNTs) in the networks significantly limits the TFT performance due to the m-SWCNTs dominating the charge transport. In this paper, we have achieved a uniform and high-density SWCNT network throughout a complete 3-in. Si/SiO2 wafer using a solution-based assembly method. We further utilized UV radiation to etch m-SWCNTs from the networks, and a remarkable increase in the channel current on/off ratio (Ion/Ioff) from 11 to 5.6 × 103 was observed. Furthermore, we used the SWCNT-TFTs as gas sensors to detect methyl methylphosphonate, a stimulant of benchmark threats. It was found that the SWCNT-TFT sensors treated with UV radiation show a much higher sensitivity and faster response to the analytes than those without treatment with UV radiation.  相似文献   

2.
Nanocomposites of ultra-thin copper oxide nanosheets (CuO NSs) and single-wall carbon nanotubes (SWCNTs) were produced and studied for their thermoelectric (TE) properties. Incorporating a small amount of SWCNTs into the matrix of CuO NSs enhanced the TE properties. This might be due to good band alignment between the two phases with large contact areas. The nanocomposite [CuO]99.9[SWCNT]0.1 showed a rapid increase with the increasing temperature in both the Seebeck coefficient and power factor. At 673 K, they reached 882 μV/K and 2500 μW/mK2, respectively. The phonon and charge transport properties were attributed to the CuO NS/SWCNT interfaces. A small module of 2 p-n pairs based on CuO/SWCNT nanocomposites (p-type) and SnO2 nanoparticles (n-type) was constructed and worked in a temperature range of 573–673 K with good stability and reusability. The measured output power was ˜1200 μW, which can power small electronic devices.  相似文献   

3.
We have fabricated single-walled carbon nanotube (SWCNT) Schottky diodes by asymmetrically modifying the two Au/SWCNT contacts using different thiolate molecules, methanethiol (CH3SH) and trifluoroethanethiol (CF3CH2SH). Characterization has revealed that highly asymmetrical contacts with Schottky barrier heights of ∼190 and ∼40 meV (increased by over 70% and decreased by over 60%, respectively with respect to that of pristine Au/SWCNT contact of ∼110 meV) were achieved for the Au/SWCNT contacts modified by CH3SH and CF3CH2SH, respectively. The performance of our SWCNT Schottky diodes is as follows: the forward and reverse current ratio (Iforward/Ireverse) higher than 104, a forward current as high as ∼5 μA, a reverse leakage current as low as ∼100 pA, and a current ideality factor as low as ∼1.42. This is at least comparable to, if not better than SWCNT Schottky diodes fabricated with asymmetrical metals, where one contact is a metal with a work function lower than that of SWCNTs to yield a Schottky contact, while the other has a work function higher than that of SWCNTs to achieve an ohmic (more near ohmic) contact.  相似文献   

4.
M. Baibarac  S. Lefrant 《Carbon》2009,47(5):1389-84
Electrochemical polymerization of 2,2′-bithiophene (BTh) on single-walled carbon nanotube (SWCNT) films has been studied by Raman scattering and infrared absorption spectroscopy. Covalent functionalization of SWCNTs with poly(bithiophene) (PBTh) in its un-doped and doped states is demonstrated. The occurrence of a charge transfer process at the interface of PBTh and SWCNTs, is shown by: (i) an up-shift of the Raman lines associated with the radial breathing modes of SWCNTs that reveals both a doping process and an additional twisting together as a rope with the conducting polymer as binding agent; (ii) a new Raman band in the range 1430-1450 cm−1 indicating the functionalization of SWCNTs with PBTh in doped and un-doped states; (iii) strong absorption bands situated in the interval 600-800 cm−1 resulting from steric hindrance produced by the nanotube binding to the polymeric chain. Treatment of the PBTh/SWCNT composite with aqueous NH4OH solution forms un-doped PBTh covalently functionalized SWCNTs. At the resonant excitation of the metallic tubes, an additionally enhanced Raman process is generated by plasmon excitation in the metallic nanotubes. It is evidenced by a particular behavior in the Stokes and anti-Stokes branch of the PBTh Raman line at 1450 cm−1.  相似文献   

5.
Wei Guo  He. Li  Hongfang Sun  Yuanfang Liu 《Carbon》2010,48(13):3769-3777
High purity single walled carbon nanotubes (SWCNTs) were prepared from arc discharge produced cloth-like soot by a new purification strategy, in which liquid oxidation and steam oxidation were combined with a freeze-drying process to remove the metallic and carbonaceous impurities. The process gives a product of >98% purity, which is acquired from a gram-scale dirty raw soot with an overall yield of ∼75% of the SWCNTs. The purity of the samples was characterized by thermogravimetric analysis, scanning and transmission electron microscopy, Raman and Vis-NIR spectroscopy, and magnetometry. A highly pure SWCNT sample with relative purity of 170.4% and IG/ID value of 78.92 is achieved. Experiments showed that HNO3/HCl refluxing combined with freeze-drying is the key process that renders the crude SWCNTs hydrophilic with a large surface area, and thus remarkably increases the efficiency of the steam treatment to remove most of the carbonaceous impurities.  相似文献   

6.
We demonstrate that both single-walled carbon nanotube (SWCNT) types and nanotube-matrix polymer-nanotube (CNT-P-CNT) junctions have profound impact on electro-optical properties of SWCNT/polymer composites. Composite IR sensors based on CoMoCAT®-produced SWCNTs (SWCNTsCoMoCAT) significantly outperform those based on HiPco®-produced SWCNTs (SWCNTsHiPco). Higher semiconducting nanotube concentration in a SWCNT material is critical to enhance the photo effect of IR light on SWCNT/polymer nanocomposites, whereas CNT-P-CNT junctions play a dominant role in the thermal effect of IR light on supported SWCNT/polymer composite films.  相似文献   

7.
Li Zhang 《Carbon》2010,48(9):2582-55
Raman microscopy and spectroelectrochemistry with polymer electrolyte gating is developed to study the effect of charging on Raman spectra of individual single-wall carbon nanotubes (SWCNTs) and bundles. The Raman spectra of a small bundle, consisting of well-separated features from a metallic and a semiconducting SWCNT, have been obtained at different electrochemical charging levels. The broad Fano peak of the metallic SWCNT exhibits an appreciable frequency upshift and simultaneous line narrowing when the charging level, either positive or negative, is increased, in agreement with the presence of a Kohn anomaly in metallic SWCNTs. The radial breathing mode of the metallic tube also shows a similar but much weaker dependence on the charging potential. While the G mode frequencies of the semiconducting SWCNT also increase with the increasing charging level, the magnitude of such change is much smaller than in the metallic SWCNT. At high negative charging potentials the G peak of the semiconducting SWCNT exhibits a larger upshift than its G+ peak, leading to the observation of merging of these two peaks. However, both G+ and G peaks of the semiconducting SWCNT become broader at high charging levels, which are not predicted from previous theoretical studies.  相似文献   

8.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

9.
Single‐walled carbon nanotubes (SWCNTs) dispersed in N‐methylpyrrolidone (NMP) were functionalized by addition of polystyryl radicals from 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐ended polystyrene (SWCNT‐g‐PS). The amount of polystyrene grafted to the nanotubes was in the range 20‐25 wt% irrespective of polystyrene number‐average molecular weight ranging from 2270 to 49 500 g mol?1. In Raman spectra the ratios of D‐band to G‐band intensity were similar for all of the polystyrene‐grafted samples and for the starting SWCNTs. Numerous near‐infrared electronic transitions of the SWCNTs were retained after polymer grafting. Transmission electron microscopy images showed bundles of SWCNT‐g‐PS of various diameters with some of the polystyrene clumped on the bundle surfaces. Composites of SWCNT‐g‐PS in a commercial‐grade polystyrene were prepared by precipitation of mixtures of the components from NMP into water, i.e. the coagulation method of preparation. Electrical conductivities of the composites were about 10?15 S cm?1 and showed no percolation threshold with increasing SWCNT content. The glass transition temperature (Tg) of the composites increased at low filler loadings and remained constant with further nanotube addition irrespective of the length and number of grafted polystyrene chains. The change of heat capacity (ΔCp) at Tg decreased with increasing amount of SWCNT‐g‐PS of 2850 g mol?1, but ΔCp changed very little with the amount of SWCNT‐g‐PS of higher molecular weight. The expected monotonic decrease in ΔCp coupled with the plateau behavior of Tg suggests there is a limit to the amount that Tg of the matrix polymer can increase with increasing amount of nanotube filler. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
This study evaluates the effect of anionic and cationic surfactants on the dispersion of purified SWCNTs in water in terms of dispersibility and on electrical conductivity of TCFs and electronic band structures of SWCNTs. The dispersibility of surfactants in an aqueous SWCNT suspension is assessed with the amount of SWCNTs dispersed, the content of surfactants required to suspend SWCNTs, and the long-term stability of dispersion. Sodium dodecylbenzene sulfonate (SDBS) shows better dispersibility and electrical conductivity of SWCNTs than sodium dodecyl sulfate, sodium cholate, and cetyltrimethyl ammonium bromide. Electronic band structures of SWCNTs vary with surfactants and nitric acid treatment, investigated by using UV–Vis–NIR and Raman spectroscopy. Metallic and semiconducting SWCNTs and surfactants make electrostatic charge interactions between them, which occur in different manners according to the electronic types of tubes and the natures of surfactants. TCFs are fabricated by using the SWCNT suspension dispersed with SDBS, which reveal a low percolation threshold with the two dimensional percolation behavior. The highest ratio of dc to optical conductivity (σdc/σop) is observed to be ∼23.1, corresponding to sheet resistance of 69 Ω/sq at the 550-nm optical transmission of 80%, upon nitric acid treatment of the SWCNT films.  相似文献   

11.
P.W. Ruch  M. Hahn  A. Wokaun 《Carbon》2009,47(1):38-670
The electrochemical doping of single-walled carbon nanotubes (SWCNTs) in 1 M Et4NBF4 in acetonitrile was investigated by in situ Raman spectroscopy. The capacitance was determined to be 82 F/g for the positive and 71 F/g for the negative SWCNT electrode, respectively, which approaches the typical values for microporous activated carbons used in supercapacitors. The changes in the Raman intensities and shifts of the D and G+ bands as well as of the radial breathing modes (RBMs) during electron and hole injection were studied as a function of the electrode potential. For the D and G+ bands, hole doping leads to strong upshifts which can be attributed to a stiffening of C-C bonds and the corresponding phonon modes. Electron doping results in much less pronounced changes in the band positions. The intensity attenuation of the RBM bands was found to be markedly different for semi-conducting and metallic SWCNTs, whereby sufficiently high doping leads to a loss of Raman intensity due to bleaching of electronic transitions. The main RBM bands upshift upon both electron and hole doping, which is attributed to changes in the chemical environment of individual SWCNTs upon charging and discharging of the electrochemical double layer within SWCNT bundles.  相似文献   

12.
The effects of the length of single-wall carbon nanotubes (SWCNTs) on their thin film transistors (TFTs) were investigated by using SWCNTs sorted in length using size exclusion chromatography. Higher device performances were obtained in longer SWCNTs and it was found that the average length of the SWCNTs is an important factor to determine the device performance. Detailed analyses, in which the SWCNT density was normalized using percolation threshold, confirmed that the dependence of on-current on the normalized density approximately follows percolation theory, independently of the SWCNT length. On the other hand, the behaviors of off-current and on/off ratio showed the considerably different dependence among SWCNT lengths.  相似文献   

13.
Shih-Hao Tseng 《Carbon》2010,48(5):1652-1661
A film of unpurified single-walled carbon nanotubes (SWCNTs) synthesized by the floating catalyst method using ferrocene as the catalyst precursor was subjected to different numbers of flashes and the products were studied. In addition to the remaining SWCNTs, Fe2SiO4 particles covered with amorphous carbon were found to attach on the SWCNTs, and the size increased with flash numbers. Fe2SiO4 arose from the oxidation of Fe3C, a ferrocene-induced catalyst particle embedded in the SWCNTs, where Si provided by SiO2 released from the mullite tube at 1200 °C during SWCNT growth. The amorphous carbon coating was attributed to insufficient time of the precipitated carbon to crystallize during rapid cooling after the flash. Variation of the Raman ID/IG ratio from an initial value of 0.035 to 0.025 after 100 flashes was due to competition between the removal of carbon from the nanotubes and the formation of amorphous carbon on the Fe2SiO4 particle surface. The electrical resistance of the SWCNT film increased with the number of flashes but the change became progressively smaller, with the increment decreasing from 17.5% to 0.2%. Similar experiments using purified SWCNTs were performed, and no such particles were observed.  相似文献   

14.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
CoMgAl layered double hydroxides were prepared as catalysts for the in situ synchronous growth of graphene and single-walled carbon nanotubes (SWCNTs) from methane by chemical vapor deposition. The as-calcined CoMgAl layered double oxide (LDO) flakes served as the template for the deposition of graphene, and Co nanoparticles (NPs) embedded on the LDOs catalyzed the growth of SWCNTs. After the removal of CoMgAl LDO flakes, graphene (G)/SWCNT/Co3O4 hybrids with SWCNTs directly grown on the surface of graphene and 27.3 wt.% Co3O4 NPs encapsulated in graphene layers were available. Further removal of the Co3O4 NPs by a CO2-oxidation assistant purification method induced the formation of G/SWCNT hybrids with a high carbon purity of 98.4 wt.% and a high specific surface area of 807.0 m2/g. The G/SWCNT/Co3O4 hybrids exhibited good electrochemical performance for pseudo-capacitors due to their high Co3O4 concentration and the high electrical conductivity of SWCNTs and graphene. In another aspect, the G/SWCNT hybrids can be used as excellent electrode materials for double-layer capacitors. A high capacity of 98.5 F/gelectrode was obtained at a scan rate of 10 mV/s, 78.2% of which was retained even when the scan rate increased to 500 mV/s.  相似文献   

16.
Composites of conducting polymer and single-walled carbon nanotubes (SWCNTs) are attracting great attentions in harvesting low-grade waste heat. Prefabricated SWCNTs film used as the working electrode was placed at the liquid interface between the inorganic phase (dilute sulfuric acid solution) and the organic phase consisting of dichloromethane (DCM), aniline (ANI), and 3,4-ethylenedioxythiophene (EDOT), together with a platinum wire (the counter electrode) and a silver chloride (AgCl/Ag) electrode (the reference electrode), to perform electrochemical polymerization of ANI and EDOT at the liquid interface. Thermoelectric (TE) composites of poly(ANI-co-EDOT) and SWCNTs were produced. Compared with composites from ultrasonic mixing and coating methods, the 10 wt% SWCNTs-composites in situ formed in electrochemical polymerization have the highest power factor (PF) of 41.56 ± 3.58 μW m−1 K−2, higher than the PF values of the composites formed by other two methods. The work indicates that the TE properties of ANI-EDOT copolymer/SWCNT (poly[ANI-co-EDOT]/SWCNT) composites prepared by electrochemical polymerization were better than those of the composites obtained by physical mixing the electrochemically synthesized poly(ANI-co-EDOT) with SWCNTs. Moreover, SWCNTs treated with sodium dodecylbenzene sulfonate (SDBS) could further improve the TE properties of the composites.  相似文献   

17.
Yuri Mackeyev 《Carbon》2007,45(5):1013-1017
A new procedure to purify HiPco single-walled carbon nanotubes (SWCNTs) from iron catalyst impurity is introduced. The protocol, which uses liquid bromine at room temperature (RT) as an oxidant, improves nanotube purity from iron by a factor of approximately 10, while maintaining good nanotube integrity as demonstrated by near infrared (NIR) luminescence and absorbance measurements. When HiPco SWCNTs are dissolved in RT Br2(l) (free of O2 and H2O), the metallic iron impurity is quickly oxidized to its bromide salt and easily removed by aqueous washing or by washing with dilute acid. The iron content (by ICP-AE) for the purified SWCNT material was 2.8-3.6% by weight (for three different samples) for a single purification step, but could be lowered to 1.6-1.8% with an additional purification cycle. Characterization of the resulting purified SWCNT material has been achieved by TEM imaging, XPS, ICP-AE analysis, Raman spectroscopy, electronic absorption spectroscopy, and by NIR photoluminescence measurements. Finally, the new Br2(l) purification procedure has been compared to and contrasted with other established purification procedures for HiPco SWCNTs and found to be a highly desirable alternative.  相似文献   

18.
The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi0.8Co0.2O2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185–188 mAh g−1), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C (16.4 mA cm−2). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.  相似文献   

19.
Development of aluminum nitride (AlN)‐single walled carbon nanotube (SWCNT) ceramic‐matrix composite containing 1‐6 vol% SWCNT by hot pressing has been reported in this article. The composites containing 6 vol% SWCNT are dense (~99% relative density) and show high dc electrical conductivity (200 Sm?1) and thermal conductivity (62 Wm?1K?1) at room temperature. SWCNTs contain mostly metallic variety tubes obtained by controlled processing of the pristine tubes before incorporation into the ceramic matrix. Raman spectroscopy and field emission scanning electron microscopy (FESEM) of the fracture surface of the samples show the excellent survivability of the SWCNTs even after high‐temperature hot pressing. The results indicate the possibility of preparation of AlN nanocomposite for use in plasma devices and electromagnetic shielding.  相似文献   

20.
We report a novel resist-assisted dielectrophoresis method for single-walled carbon nanotube (SWCNT) assembly. It provides nanoscale control of the location, density, orientation and shape of individual SWCNTs. Sub-50 nm accuracy and a yield higher than 85% have been achieved. Using the method, we demonstrate suspended-body SWCNT field-effect transistors (FETs) with back-gate and sub-100 nm air-gap lateral-gate configurations. The suspended-body SWCNT FETs show excellent electrical characteristics with Ion/Ioff  107, ultra-low off currents ~10?14 A and small subthreshold swings. The technique contributes to the ultimate solution for bottom-up fabrication of a broad field of CNT-based devices, such as: complementary metal–oxide-semiconductor and nano-electrical–mechanical-system devices for sensing and radio-frequency applications. Moreover, the versatile method could be applied to the assembly of many other promising materials, such as: nanowires and graphene flakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号