首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphene-nanocrystalline metal sulphide composites were prepared by a one-pot reaction. A dispersion of graphite oxide layers in an aqueous solution of metal ions (Cd2+/Zn2+) was reacted with H2S gas, which acts as a sulphide source as well as a reducing agent, resulting in the formation of metal sulphide nanoparticles and simultaneous reduction of graphite oxide sheets to graphene sheets. The surface defect related emissions shown by free metal sulphide particles are quenched in the composites due to the interaction of the surface of the nanoparticles with graphene sheets.  相似文献   

2.
We used a UV-irradiation reduction method to prepare Ag-reduced graphene oxide (RGO) composite by reducing graphite oxide and silver ion in ethanol. Transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), UV–vis absorption spectrophotometry (UV–vis), and X-ray photoelectron spectroscopy (XPS) characterized the prepared samples. Ag–RGO nanocomposite was tested for reduction of nitrobenzene to aniline under visible light. The Ag–RGO nanocomposites have a high efficiency to convert nitrobenzene to aniline under visible-light irradiation. Therefore, Ag-reduced graphene oxide nanocomposite can be used as a photocatalyst for organic synthesis.  相似文献   

3.
Well-dispersed reduced graphene oxide (r-GO) sheets loaded with metal nanoparticles were produced in dimethylformamide (DMF). The r-GO suspension was prepared through the photocatalytic reduction of graphene oxide (GO) using a phosphotungstate as a homogeneous photocatalyst under UV irradiation. Immediately after UV lamp was turned off, the injection of precursors of Ag, Au, and Pd caused the rapid nucleation because photoreduced phosphotungstates as well as electrons stored in r-GO directly reduced metal ions. Furthermore, the r-GO sheets not only provided the nucleation sites but also prohibited the metal nanoparticles from agglomeration. As a result, relatively uniform-sized metal nanoparticles were formed on the r-GO sheets. With phosphotungstates and UV light irradiation, both GO and metal ions can be reduced to form the hybrids of Ag, Au, and Pd/r-GO as a suspension in DMF or an isolated paper sheet without using any toxic reagents.  相似文献   

4.
An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO2/graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO2 or PtRu nanoparticles. The as-synthesized SnO2/graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.  相似文献   

5.
Nanoporous graphene sheets were generated through a simple thermal annealing procedure using composites of ferrocene nanoparticles and graphene oxide sheets as precursors in a large scale. The morphology, composition, and formation mechanism of the as-obtained nanoporous graphene sheets were studied complementarily with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, and other spectroscopy techniques. We found that the density of nanopores on the graphene sheet was determined by the surface distribution of oxygen-containing groups on the original graphene oxide sheets. The coin cells using nanoporous graphene sheets as anode materials showed higher specific lithium ion storage capacity, better discharge/charge rate capability and higher cycling stability when compared to the coin cells with graphene or chemically reduced graphene sheets as anodes.  相似文献   

6.
Zhu J  Zhu T  Zhou X  Zhang Y  Lou XW  Chen X  Zhang H  Hng HH  Yan Q 《Nanoscale》2011,3(3):1084-1089
We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.  相似文献   

7.
《Ceramics International》2015,41(6):7661-7668
Well-exfoliated graphene oxide sheets were initially fabricated through a modified pressurized oxidation method with powdered flake graphite as raw material. A variety of inorganic-reduced graphene oxide composites have been then successfully synthesized through a general solvothermal strategy with the graphene oxide sheets as supports, ethanol as solvent, and metal salts as precursors. After the solvothermal reactions, Ni(OH)2 nanoparticles, Fe2O3 nanorods, W18O49 nanowires, ZnO nanoparticles, and Ag nanoparticles were in situ grown on the surfaces of the graphene oxide sheets, accompanied by effective reduction of graphene oxide to reduced graphene oxide. The as-prepared products have been systematically characterized by electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, and Raman spectroscopy. The present work opens up a versatile route for preparing the reduced graphene oxide-based composites.  相似文献   

8.
O. Akhavan 《Carbon》2011,49(1):11-18
Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)–visible irradiation times. After 2 h irradiation, the relative concentration of the C–OH, CO and OC–OH bonds showed nearly 80% reduction relative to the corresponding concentrations before irradiation. The chemical reduction was accompanied by variations in the optical absorption of the ZnO/graphene (oxide) suspension, as its color changed from light brown to black. The current–voltage measurement showed that electrical sheets resistance of the ZnO/graphene oxide sheets decreased by increasing the irradiation time. Therefore, the ZnO nanoparticles in the ZnO/graphene oxide composite could be applied in gradual chemical reduction and consequently tuning the electrical conductivity of the graphene oxide platelets by variation of UV irradiation time in a photocatalytic process.  相似文献   

9.
A simple chemical approach has been developed for the synthesis of graphene through a mild reduction of graphene oxide (GO) using metal nanoparticles as the catalyst for the hydrolysis reaction of NaBH4 at room temperature. The morphology and structure of the graphene were characterized with atomic force microscopy and transmission electron microscopy. The reduction process and quality of graphene were followed and examined by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. By this method, graphene can be prepared in large quantity without using toxic reducing agents such as hydrazine or its derivatives, making it environmentally benign. The reaction is conducted under mild conditions (room temperature), resulting in the formation of fewer defects. The method can be easily scaled up and the metal catalyst can be recycled.  相似文献   

10.
We report a simple and rapid method to synthesize pure graphene sheets and those decorated with metal nanoparticles by combining chemical foaming agents, green oxidizers, and microwave radiation. Under microwave radiation, an intercalated foaming agent between graphite oxide layers plays a key role in the rapid and large expansion of the graphene worm along the thickness direction and in the reduction process of the graphite oxide. By adding metal precursors to the reactant mixture, this technique can also be extended to a one-pot method to synthesize graphene decorated with metal nanoparticles. A variety of metal precursors was used to yield iron, platinum, and palladium decorated graphene sheets. These were tested for their electrocatalytic performance in organic glucose sensing and inorganic electro-active compounds, all of which showed a remarkable increase in electrochemical performance for all cases.  相似文献   

11.
We report a simple and effective route to convert graphene oxide sheets to good quality graphene sheets using hot pressing. The reduced graphene oxide sheets obtained from graphene oxide by low temperature thermal exfoliation are annealed at 1500 °C and 40 MPa uniaxial pressures for 5 min in vacuum. No appreciable oxygen content was observed from X-ray photoelectron spectroscopy and no D peak was detected in the Raman spectrum. The graphene sheets produced had a much higher electron mobility (1000 cm2 V−1 S−1) than other chemically modified graphenes.  相似文献   

12.
The efficient synthesis of graphene sheets using pyrrole as a reducing agent was explored. The obtained graphene sheets were dispersible in organic solvents such as ethanol, isopropanol, N,N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, tetrahydrofuran, and acetone. During this reduction reaction, pyrrole was oxidized, forming oxidation product of pyrrole and adsorbed on the graphene sheets surface by π–π interaction. The oxidation product of pyrrole acted as a capping agent for graphene sheets by preventing re-stacking and formed organically dispersible graphene. The formation of graphene and its crystalline nature was indicated by the transmission electron microscopy and the atomic force microscopy analysis. Raman, X-ray photoelectron spectroscopy and X-ray diffraction provided the evidence for graphene formation from graphene oxide precursor. Furthermore, the reduced oxygen content and N 1s peak observed by the X-ray photoelectron spectroscopy analysis of graphene sheets confirmed the reduction reaction and presence of adsorbed oxidation product on the surface of graphene sheets. The resulting graphene sheets were readily dispersible in solvents and easily to process.  相似文献   

13.
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.  相似文献   

14.
Xiang G  He J  Li T  Zhuang J  Wang X 《Nanoscale》2011,3(9):3737-3742
We present the facile preparation results of noble metal nanostructures induced by graphene via rapid coreduction by Ti(3+) at room temperature. Such a reduction of graphene oxide (GO) can be readily performed in solutions or on various substrates within seconds. High quality noble metal nanocrystals can be prepared by using graphene as the controlling agent at room temperature, including Rh, Au and Rh-Pt nanodendrites and Pd nanoparticles, showing the roles of graphene on tuning the growth behaviors of nanostructures. These surface clean Pd nanoparticles show high catalytic activity and selectivity in Suzuki and Heck coupling reactions.  相似文献   

15.
Pt and Pd–Pt nanoparticles were anchored on reduced graphene oxide (RGO) with the aid of poly(diallyldimethylammonium chloride) (PDDA), where Pt and Pd ions were first attached to PDDA-functionalized graphene oxide sheets and the encased metal ions and graphene oxide were then reduced simultaneously by ethylene glycol. As supported by transmission electron microscopy, metal nanoparticles, of small particle size even at a high metal loading, were chemically attached to PDDA–RGO. X-ray diffraction indicates that the as-prepared Pd–Pt nanoparticles have a single-phase fcc structure and are principally alloys of Pd and Pt. Among the RGO-supported Pt and Pd–Pt catalysts, Pt nanoparticles anchored on PDDA–RGO exhibit the highest activity for the oxygen reduction reaction (ORR), and the ORR activity of the Pd–Pt alloy electrocatalysts increases with Pt content. All the catalysts demonstrate an enhanced ORR durability when PDDA is present; strongly suggesting that PDDA plays a crucial role in the dispersion and stabilization of the metal nanoparticles on RGO. The ORR activities of the Pd–Pt catalysts remain enhanced even after accelerated durability testing. The formation of a Pt-rich shell, as confirmed by X-ray photoelectron spectroscopy and CO stripping voltammetry, may account for the increased activity.  相似文献   

16.
A green and efficient approach for the synthesis of graphene decorated with silver nanoparticles is demonstrated by simultaneously reducing both graphene oxide (GO) sheets and silver ions with glucose as the reducing agent and poly(N-vinyl-2-pyrrolidone) (PVP) as the surface modifier. Different silver-containing materials are obtained by changing the synthesis temperature. The oxygen-containing groups of the substrate influence its decoration with the in situ formed silver nanoparticles. The combination of glucose and a silver–ammonia solution, as well as maintaining a good dispersion of GO by using PVP are crucial for the decoration of graphene with silver nanoparticles. The materials exhibit a distinct surface-enhanced Raman scattering effect.  相似文献   

17.
This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 °C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g−1 (based on composite) is obtained at a specific current of 1 A g−1 as compared with 71 F g−1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g−1 even at 10 A g−1. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.  相似文献   

18.
The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π1 resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π1 band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.  相似文献   

19.
It has been a great challenge to directly deposit uniform metal particles onto pristine graphene due to its low surface energy and chemical inertness. Without any surfactant or functionalization, we have developed a unique synthesis of high-quality PtRuNi trimetallic nanoparticles supported on pristine graphene via a simple but effective supercritical route. Due to excellent wettability between supercritical carbon dioxide and the carbon surface, ultrafine metal particles are uniformly and firmly anchored on the graphene sheets. While well retaining its intrinsic structure and outstanding electronic conductivity, the pristine graphene with well-dispersed PtRuNi trimetallic nanoparticles shows significantly improved catalytic activity towards methanol oxidation, which is at least ten times higher than those of the commercial Pt/C and homemade Pt/XC-72 catalysts. The resulting trimetallic hybrid also exhibits high stability as compared to Pt and PtRu/pristine graphene composites and the reduced graphene oxide counterparts. In principle, the supercritical method can be applied to other metal nanoparticles in fabrication of high-performance graphene-based nano-catalysts.  相似文献   

20.
One of the most important applications of graphene-based materials is the formation of nanocomposite materials, where graphene in the bulk-polymer matrix transfers its properties onto the polymeric material. Control of the polymer/graphene interface by attached polymeric interlayers is essential to generate nanocomposites, thus avoiding the aggregation of graphene nanoparticles. Among all graphene materials graphene oxide (GO) and reduced graphene oxide (r-GO) can be prepared on large scales useful for mass production graphene/polymer composites. The direct use of graphene materials as both, the polymerization initiator or catalyst and additive not only diminishes the agglomeration of particles in composites but also reduces the process of composite production to one facile step, which in turn avoids further purification regarding to strong acid initiators and metal particles catalysts. Here, literature activities within the past ∼10 years using graphene-based materials either as initiator or catalyst in different polymerization reactions are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号