首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了强化气固射流反应器内颗粒弥散和气固混合性能,采用光纤探针对不同喷嘴收缩射流颗粒浓度分布规律及其发展特性进行了研究;考察了射流速度和颗粒负载率对颗粒浓度分布、质量、动量和回流通量的影响。结果表明,喷嘴收缩效应使颗粒向射流轴线汇聚形成局部浓相区,收缩角的增大使浓相区向喷嘴靠近。回流卷吸和壁面效应的共同作用使颗粒浓度沿径向呈“多段式”分布特征。颗粒在射流轴线的汇聚和边壁区的富集降低了颗粒分布的均匀性。在射流近场,颗粒的质量和动量通量主要发生在射流剪切层;随剪切层的发展其通量峰值向边壁移动,而近壁区的颗粒回流使质量和动量通量显著增加。  相似文献   

2.
为了考察多射流锥形对撞煤加氢气流床内的冷态流场情况,以3 t/d的热态煤加氢气化炉为依据建立了气流床冷模装置。使用三维动态颗粒分析仪(3D-PDA)对气流床内的速度场进行了测量,同时使用Fluent软件,采用κ-ε模型对气流床内的流动情况进行了模拟研究,模拟结果与实验结果能较好地吻合。结果显示:多射流锥形对撞气流床内的流体流动分为对撞区、射流区、回流区和管流区,在考察范围内,随着进气速度的增加,回流区的体积占比先增大后减小;随中心喷嘴携带气速度的增加,射流区速度增大,且较进气速度的影响更为敏感;适当增加进气角度,则会降低射流区速度,增大回流区体积。  相似文献   

3.
以粒子图像流场测量(PIV)与计算流体力学(CFD)数值模拟相结合的方法,对气相和气固两相同轴射流流场特性进行了研究,探究了射流速度比、喷嘴直径、射流空间直径和射流出口直径对回流量和回流区域的影响规律。结果表明:射流区和壁面之间存在沿轴向延伸至整个射流长度的回流区域,中等Stokes数颗粒会随回流气体改变运动轨迹,聚集在低涡量高应变的回流涡点;射流速度比、喷嘴直径和射流空间直径对回流量影响显著,实验工况下的最大回流量是射流量的10.29倍;当射流充分发展后,射流出口直径对回流量没有影响。通过气固两相同轴射流流场特性的研究,为进一步阐明气固耦合的颗粒弥散机理提供了理论指导。  相似文献   

4.
为研究固定床熔渣气化炉中气化剂喷嘴安装角度、喷嘴口径、气化剂射流速度与高速射流区深度的关系,利用模化原理对工业级气化炉高速射流区建立50 cm二维冷态模型,采用精密皮托管测量颗粒床层中的气体速度分布,并采用无量纲分析方法,对试验数据进行处理。结果表明:射流穿透深度与喷嘴口径的二次方大致成正比关系;射流深度随喷嘴安装角度的增大呈现先增加后减小的趋势,使得射流深度最大的安装角度为17°~20°;射流深度随射流气速增加呈增大趋势,并拟合出气化剂喷嘴安装角度、射流速度、喷嘴口径与射流区深度的无量纲关系式。  相似文献   

5.
在研究了射流交叉角度和密度比对同轴交叉射流轴线轴向速度影响的基础上 ,采用DualPDA进一步研究了受限同轴交叉射流的轴向速度沿径向的分布。文中分别研究了射流交叉角度和密度比对径向速度分布、回流区长度、回流量的影响。结果表明 ,射流交叉角度、射流介质密度比越大 ,速度分布越陡 ;回流区越长 ;最大回流量与θ-1成线性关系。  相似文献   

6.
颗粒运动特性是深入理解颗粒弥散和气固混合的关键,采用粒子图像测速仪(PIV)对不同收缩射流颗粒运动行为进行了研究;考察了喷嘴收缩角(α=20o,40o,60o,80o)和气体射流速度对颗粒轴向速度、径向速度和相干涡结构的影响。结果表明:与无收缩直管射流相比,喷嘴收缩效应使射流近场气固相间存在较大的轴向滑移速度,颗粒做加速运动。喷嘴收缩产生径向速度分量,使颗粒向射流轴线聚集,形成斜向撞击流,促进了射流动量由轴向向径向的转化。径向速度分量随喷嘴收缩角的增大而增大。气体射流速度增加,颗粒速度的滞后性和相间弛豫时间延长,加速区下移。喷嘴收缩加剧了射流剪切层的不稳定性,促使剪切层振荡卷起形成大尺度和高涡量的轴对称涡环。  相似文献   

7.
采用CFD-DEM(Computational Fluid Dynamics with Discrete Element Method),模拟了磨料射流中颗粒在清水与0.2%(以质量分数计)胍胶溶液中的运动过程,研究了颗粒的运动轨迹、颗粒在喷嘴轴线位置处的速度变化情况、流体参数对射流扩散及颗粒空间分布的影响.在喷嘴收缩...  相似文献   

8.
采用高速相机对同轴对称撞击流中颗粒运动行为进行了实验研究,采用图像处理软件对获得的图片进行分析处理,得到了颗粒在同轴对称撞击流中的运动轨迹、运动速度、最大渗入距离和旋转速度等参数.考察了喷嘴出口气速、颗粒大小、颗粒出口速度以及喷嘴间距对颗粒运动行为的影响.结果表明:颗粒在同轴对称撞击流中的运动有直接射出模式和振荡模式,其中振荡模式占70%;出口气速的增加使颗粒轴线速度和旋转速度变大;随着颗粒相对出口速度、颗粒Stokes数和喷嘴间距的增加,颗粒的最大渗入距离变大.  相似文献   

9.
在内径120mm的圆柱形导向管喷动流化床内,实验测定了单相气体流场的时均速度分布和湍流强度分布以及声波对它们的影响。结果表明:采用高速射流作为喷动气时,在卷吸区射流中心速度衰减快,卷吸作用强;进入导向管后中心速度开始下降仍然很快,但在经过较短距离后即趋于稳定,径向速度分布亦趋于稳定但不均匀;环隙速度分布在分布板影响下则较均匀;在喷泉区,刚离开导向管时射流中心速度仍较大,但随高度增加而较快下降,径向速度分布也趋于平缓。导向管区的湍流强度远高于环隙区和喷泉区。声波在导向管喷动流化床内单相气流中传播时衰减很小,并对时均速度几乎没有影响,但可以显著提高气流的湍流强度,且湍流强度的增加幅度随声强增加而加大,随频率增加而减小。湍流强度的增加,可以增强气流对颗粒的分散作用,有利于抑制导向管内粉体偏析,防止被射流破碎后的小聚团在环隙区发生再团聚,减少喷泉区粉体夹带,提高超细粉的流化质量。  相似文献   

10.
李伟锋  曹文广  许建良  刘海峰  刘旭军  黄斌  王俭 《大氮肥》2011,34(4):225-228,233
受限旋转射流流场特征的研究对顶置单喷嘴气化炉的开发、结构优化以及长周期稳定运行有重要意义。本文对不同旋流数下顶置单喷嘴气化炉内的速度场和停留时间分布进行了实验研究。结果表明:随着旋流数的增加,切向旋转速度显著增加,气化炉内轴向速度衰减加快,回流区减小;气量一定时,随着旋流数的增加,气化炉内气体的最短停留时间显著增加,停留时间标准差减小。  相似文献   

11.
大间距两不对称喷嘴对置撞击流驻点偏移规律   总被引:2,自引:0,他引:2  
采用热线风速仪对大喷嘴间距下两不对称喷嘴形成的对置撞击流的轴线速度分布和驻点偏移规律进行了实验研究.研究结果表明,在大喷嘴间距下,两股射流在发生碰撞前,射流已经进入了充分发展区,当两喷嘴出口动量相等时,驻点位于两个喷嘴轴线中心;在撞击区中,两股射流关于撞击面是对称的.轴线上撞击流驻点受两喷嘴动量比的控制,随着动量比偏离1撞击流驻点向动量小的一侧喷嘴移动,两喷嘴出口动量差别越大,驻点偏离中心距离越大.得到了一个描述大喷嘴间距下驻点偏移的公式,拟合结果与实验结果的平均相对误差为10%.  相似文献   

12.
撞击流气化炉内颗粒停留时间分布的随机模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
根据多喷嘴对置式气化炉流场测试,将气化炉划分为若干区域,运用时间离散、状态离散的马尔可夫链随机模型,模拟了气化炉内颗粒相的停留时间分布(RTD)。当颗粒在撞击区和射流区间的回流比为0.5,向下撞击流股区和管流区为平推流模型,其他区域按全混流模型处理时,模拟值与实验值吻合较好。随着进料流量的增大,平均停留时间减小,量纲1方差减小;随着回流比的增加,平均停留时间增大;气固两相平均停留时间接近,但RTD存在一定差异。  相似文献   

13.
为了研究固定床熔渣气化炉喷嘴射流速度和安装角度对炉内流场的影响,搭建了固定床熔渣气化炉冷态试验平台,并结合Fluent软件进行了建模。结果发现:(1)随着气体流量和射流速度的不断增加,气体在物料内部的穿透距离不断加长;(2)随着喷嘴下倾角度的增加,射流深度、回流区径向深度及回流区高度呈不断减小趋势;当喷嘴下倾5°~10°布置时为最优工况,料层内部喷嘴方向射流穿透深度适中,炉内流场分布较好;(3)随着喷嘴切圆角度的不断增大,喷嘴对冲碰撞作用越小,气流逐渐偏离径向区域,喷嘴轴截面气体分布量逐渐变少,料层内部射流穿透深度先增大后减小。综合考虑各因素,喷嘴下倾5°并切圆旋转10°布置时,料层内部水平方向射流穿透深度最大,炉内流场分布较好。  相似文献   

14.
以水刺加固喷嘴高速射流对聚合物纤维进行水力缠结加固成形的过程为研究对象,通过建立水刺加固喷嘴喷射流场理论模型,经过数值模拟研究了4个不同水刺加固喷嘴高压喷射流场的运动特征,并与粒子图像测速仪系统测试的结果进行了对比。结果表明:采用Realizable k-ε湍流模型描述水刺工艺水腔内喷嘴的喷射流场正确,建立的数值模拟计算求解方法有效,与实验测试值十分吻合;适当增大喷嘴喷口的高度,可使流体在喷嘴喷口轴向方向的速度增大;适当增大射流初始段的长度,可使流体的流量和压力增大,提高水刺非织造纤维网缠结效果;随着射流过渡段长度的增大,混合段(即过渡段和充分发展段)出口压力增大,喷射流体的速度增大,纤维网所受到的冲击力增大;适当减小喷嘴过渡段高度,混合段出口处压力增大,可以实现较大范围内喷射流体速度的增大,改善水刺非织造纤维网缠结效果。  相似文献   

15.
《化学工程》2016,(4):68-73
建立了综合数学模型对某化工厂单喷嘴水煤浆气化炉内多相湍流反应流动过程进行数值模拟,分析了气化炉直段高径比对气化炉内反应流动的影响。由结果可知:现有气化炉高径比较短,炉内存在射流区和回流区,回流区一直延伸到气化炉底部;当直段高径比大于2.3时,出现平推流区;除射流火焰区外,从上到下炉内温度及CO_2和H_2O体积分数先升高后降低,而CO和H_2体积分数先降低后升高。直段高径比增大,平推流区体积分率增大,出气化炉有效气含量、碳转化率和有效气产率都增大,单位有效气氧耗减小;当直段高径比大于4.3时,以上气化炉性能数据趋于稳定值。高径比增大,有利于提高飞灰颗粒停留时间和壁面熔渣反应时间,提高气化炉效率。  相似文献   

16.
采用PIV测速系统和高速摄像仪对同轴气固两相射流进行了实验研究,着重考察了同轴射流结构和旋流对颗粒流动与混合特性的影响。结果表明,环形气流作用下颗粒获得的轴向速度比相同条件下中心气流作用下的颗粒轴向速度大,且气固两相的混合效果更佳,在这两种同轴射流结构下,颗粒的轴向速度仅在靠近喷嘴的横截面上分布较为均匀。而旋流,特别是强旋的引入不仅可以促进远场区颗粒速度的均布,而且能够有效地改善两相混合效果。  相似文献   

17.
为研究七喷嘴气化炉的流场分布,建立了顶置七喷嘴气化冷模试验装置,采用激光粒子成像测速系统(PIV)在气化炉的上部、中部及下部视窗进行了流场测试,比较分析了颗粒流量、分散风流量对气化炉流场的影响。结果表明,在颗粒流量20~150 kg/h,分散风流量740~880 m3/h的工艺条件下,气化炉上部流场呈现自由射流特点,射流长度为40 cm,平均射流速度为25 m/s,中下部流场则以返混区为主,流速在8 m/s以下;颗粒流量增大会使得最大射流速度由40 m/s降低至15 m/s,且气化炉上部射流粒子束的径向脉动增强,造成射流弥散;分散风流量增大使得最大射流速度由25 m/s增至35 m/s,射流长度无明显变化。颗粒流量和分散风流量对流场的影响主要体现在气化炉上部,对中下部流场的影响逐渐减弱。  相似文献   

18.
不同形状喷嘴的射流流动与卷吸特性   总被引:2,自引:0,他引:2  
在不同雷诺数下,基于ANSYS Fluent 6.3软件对圆、椭圆、正方、十字、三角5种形状喷嘴的射流卷吸特性进行数值模拟,分析了轴向射流时均速度分布. 结果表明,三角形喷嘴的射流轴向最大时均速度最大,不同形状喷嘴的射流轴向最大时均速度均随轴向位置增大呈幂函数关系衰减;射流穿透深度与雷诺数和弗劳德准数存在多元线性关系;随轴向位置增大,射流横截面形状由初始段内喷嘴形状逐渐向圆形转化并最终扩展为圆形边界;射流轴线速度半值宽随轴向位置增加呈线性增大趋势,三角形喷嘴的卷吸率是十字形喷嘴的1.92~2.32倍.  相似文献   

19.
利用高速摄像仪对二维喷嘴内稠密气固射流稳定性进行了实验研究,考察了颗粒粒径、料仓压力以及喷嘴收缩角等因素对射流流动模式及稳定性的影响。结果表明:对于颗粒粒径为78μm的气固射流,随着料仓压力的增大,射流出口速度增大,射流固含率降低,在料仓压力≥0.03MPa、射流速度≥4.82m/s、射流固含率≤0.168时,喷嘴内稠密气固射流出现气泡型的不稳定流动模式;随着颗粒粒径的增大,气固射流固含率降低,喷嘴内稠密气固射流从气泡模式转变为颗粒团不稳定流动模式;改变喷嘴收缩角对射流不稳定模式影响不大。利用微型压力传感器对喷嘴直管不同位置压力进行测量,结果表明压力脉动主要是由于气固射流中气泡及颗粒团的产生及演变导致的。研究表明,随着料仓压力增大,颗粒在喷嘴内向下运动过程中压降增加,渗透进颗粒流的气体分率增加,将导致喷嘴内气固相互作用增强,进而引起气固射流不稳定。  相似文献   

20.
汤振彪  崔晓钰 《化工进展》2022,41(7):3431-3445
液体阵列射流冲击冷却是解决高热流密度散热问题的最有效技术之一,能够有效地对目标表面进行散热,具有散热能力高、能效比高和噪声低的优点,在散热方面具有巨大优势。本文简述了国内外对阵列射流冲击的研究进展,从换热工质和射流冲击冷板的换热结构两个方面,指出了其对液体阵列射流冲击换热特性的影响,并介绍了倾斜射流和旋流射流两种新型阵列射流方式。综合分析了常用的液体换热工质和纳米流体换热工质在射流冲击过程中强化换热的原理,介绍了喷嘴孔型、喷嘴的排列方式和冲击表面结构三种阵列射流结构。分析表明,不同孔型的喷嘴会影响流体的射流速度和湍流特性,不同的喷嘴排列方式会对射流流体的相互作用和有效冲击面积产生影响,不同的冲击表面会影响射流工质的循环混合,这些都将对射流冷板的换热特性产生很大影响。指出了解影响液体阵列射流冲击效果的主要因素,是改善和提高射流换热性能的根本方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号