首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

2.
《广东化工》2021,48(8)
本文通过水热法的方式获得了Li Ni_(0.5)Mn_(1.5)O_4正极材料,并且利用1%Al F_3对Li Ni_(0.5)Mn_(1.5)O_4的表面进行包覆改性。SEM电镜测试表明,经过包覆改性手段处理后的样品与纯样相比其材料的晶体结构未发生改变,对未包覆的Li Ni_(0.5)Mn_(1.5)O_4和1%Al F_3包覆后的Li Ni_(0.5)Mn_(1.5)O_4的正极材料通过新威和电化学工作站进行了电化学性能测试,所获结果表明:发现Al F_3在材料表面形成的包覆层对电解液与Li Ni_(0.5)Mn_(1.5)O_4正极材料之间的相互作用起到了抑制作用,因此经过包覆改性的Li Ni_(0.5)Mn_(1.5)O_4正极材料的电化学性能明显提高,1%Al F_3包覆后Li Ni_(0.5)Mn_(1.5)O_4的正极材料的倍率性能以及0.2C低电流密度下首次放电比容量均得到提高。  相似文献   

3.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

4.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

5.
近年来随着电动汽车等高功率密度、高比能量的极大需求,传统的正极材料已经不能满足这些要求。且由于LiNi_(0.5)Mn_(1.5)O_4具有高电压和高能量密度等优点,该材料的研究也逐渐增多,在此基础上文章阐述了LiNi_(0.5)Mn_(1.5)O_4材料合成方法的研究进展。不同制备方法得到的材料电化学性能也有所差异,根据所需产品的性能采用相应的制备方法并对其进行改进也是今后研究的重要课题。  相似文献   

6.
用均匀设计法优化了Co~(3+)、Li~+、F~-共掺杂的LiNi_(0.5)Mn_(1.5)O_4的组成和性能,并用XRD、SEM和恒电流充放电技术研究掺杂对材料结构、形貌和充放电性能的影响。结果表明,共掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂离子以固溶体形式存在,Co~(3+)、Li~+和F~-共掺杂能同时提高材料的放电比容量和循环性能,其中Li_(1.02)Co_(0.07)Ni_(0.41)Mn_(1.5)O_(3.955)F_(0.045)的放电容量为145.4 m A·h/g,50个循环后容量保持率为97.1%。  相似文献   

7.
三元正极材料(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2)具有较好的安全性能和循环性能,兼顾了其它二元电极材料的诸多优点,成为目前高性能锂离子电池正极材料的研究重点之一,其市场占有率已经超过40%。详细叙述了近年来国内外对三元正极材料的制备和改性所做的研究,着重介绍了其高温固相法、共沉淀法、溶胶-凝胶法等制备方法及掺杂、包覆改性方法对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电化学性能的影响,以及这些改性方法存在的问题。  相似文献   

8.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

9.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

10.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

11.
采用3种含铝化合物(AlPO_4、Al_2O_3和AlF_3)对富锂锰基材料Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2进行表面包覆改性,研究了表面包覆对富锂锰基材料的首圈库伦效率和循环性能的影响。结果表明与原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的库伦效率(71.0%)相比经过AlPO_4表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2库伦效率最高达到了86.3%。经过50圈循环后相比于原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的容量保持率(58.9%),由Al_2O_3表面包覆改性的容量保持率提高最大,为96.1%。经过AlF_3表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2综合性能最佳,其首圈库伦效率达到了81.1%,容量保持率达到了92.4%。  相似文献   

12.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

13.
采用聚合物辅助法制备了Co~(3+)掺杂的LiNi_(0.5)Mn_(1.5)O_4正极材料,并用X射线衍射(XRD)分析了材料的结构。XRD图谱表明,Co~(3+)掺杂的材料仍具有Fd3m尖晶石结构。随着Co~(3+)掺杂量的增多,Li_xNi_(1-x)O杂质相逐渐消失。采用恒流充放电试验和电化学阻抗谱(EIS)研究了电化学性能。电化学测试结果表明,随着Co~(3+)掺杂量的增加,电荷转移电阻显著降低,同时锂离子扩散系数明显增强、倍率放电性能得到有效改善。  相似文献   

14.
本文研究了丙烯酸用量与预烧温度之间协同关系的复配效应。采用丙烯酸盐自模板法,制备了5V锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料。经XRD、SEM和充放电循环测试,当n_(AA)∶n_(金属离子)=2.8∶1、预烧温度为500℃时,制备的材料为尖晶石结构,结晶度高,粒径大小均匀,在0.5C倍率的充放电循环下,首次放电容量为137mAh·g~(-1),循环50次后容量保持率为94%,电化学性能优良。  相似文献   

15.
《应用化工》2017,(1):10-13
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

16.
《应用化工》2022,(1):10-14
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

17.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

18.
采用工业级碳酸锂、三氧化二镍和电解二氧化锰为原料合成了镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4),研究了煅烧温度对材料性能的影响。采用X射线衍射、扫描电镜、激光粒度仪、放电循环曲线、循环伏安曲线和交流阻抗谱图表征了颗粒的结构、形貌、粒度分布和电化学性能。结果表明:制备的5 V镍锰酸锂均为尖晶石结构,但含有杂质相Li_xNi_(1-x)O、Li_xNi_yMnzO和Ni_xO。在煅烧温度为850℃、煅烧时间为12 h条件下制备的样品具有最佳的结构形貌和电化学性能,在放电倍率为1C、2C、5C条件下,LiNi_(0.5)Mn_(1.5)O_4对应的首次放电容量分别为120.8、118.1、111.2 m A·h/g,且循环200次仍具有优异的容量保持率。  相似文献   

19.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

20.
采用共沉淀法合成了球型前驱体Ni_(0.25)Mn_(0.75)(OH)_2,与锂源混合煅烧得到锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2,并对其进行铝掺杂改性,得到样品Li_(1.2)(Ni_(0.2)Mn_(0.6))_(1-x)Al_(0.8x)O_2(x=0~0.03)。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对各个样品的结构、形貌和电化学性能进行了表征,结果表明:掺杂铝后,样品具有规则的球形形貌,层状结构保持完整,阳离子混排程度降低,铝掺杂量为2%的样品(x=0.02)阳离子混排程度最小,结构最稳定,具有较高的首次充放电效率和最优异的循环性能,其首次充放电效率为84.2%,1C倍率下循环50次的容量保持率为95.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号