首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气体射流作用下燃煤可吸入颗粒的团聚   总被引:3,自引:0,他引:3  
在可吸入颗粒团聚室中引入气体射流,使团聚室内形成局部湍流强化颗粒碰撞. 团聚过程中以撞击式采样器和激光粒子计数器测量可吸入颗粒团聚前后质量与数量变化来评价颗粒的团聚效率. 研究结果表明,增大射流出口雷诺数和增大射流与主气流的气速比均能提高可吸入颗粒的清除效率. 射流对不同粒径颗粒的清除效率不同,粒径较小颗粒(<1.0 mm)的清除效率最高. 团聚室内气体相对湿度在40%~50%时,颗粒清除效率最高,团聚后颗粒质量中位径由2.83 mm增大到5.03 mm. 增大飞灰质量浓度,可吸入颗粒的质量清除效率与数量清除效率均降低.  相似文献   

2.
气固射流作用下可吸入燃煤飞灰颗粒的团聚   总被引:2,自引:0,他引:2  
团聚室中引入气固射流,使团聚室内形成局部湍流,强化颗粒间的碰撞.以撞击式采样器测量燃煤飞灰可吸入颗粒团聚前后质量变化来反映颗粒的团聚情况.实验结果表明,引入气固射流后,颗粒在团聚室内团聚沉降,撞击式采样器收集到的颗粒质量减少,颗粒清除效率提高.加入粗颗粒可有效提高可吸入颗粒清除效率,且随粗颗粒粒径增大,清除效率提高更加...  相似文献   

3.
同轴气固射流在能源领域具有广泛地应用,但大多数研究集中在颗粒浓度较低的工况。为了研究稠密同轴气固射流的流动特性,采用了稠密离散相模型(DDPM)耦合离散元模型(DEM)的方法对该体系进行计算流体动力学(CFD)模拟,该方法同时考虑了孔隙率对气固曳力的影响和颗粒间的碰撞作用。由于射流过程中,气体对颗粒的作用占主导,分别考虑了不同环形气体速度和气固曳力模型对气固流动的影响。模拟结果表明,该模型能合理地模拟在不同气速下稠密气固两相射流的颗粒弥散特性,与实验现象定性一致。在较高气速下,引入湍流模型对预测结果有显著影响,模拟得到的颗粒弥散程度较大。不同气固曳力模型对颗粒弥散的预测有明显影响,WenYu曳力模型下颗粒弥散程度较大,Gidaspow模型次之,SyamlalO’Brien模型给出的颗粒弥散程度较小。  相似文献   

4.
采用标准κ~ε湍流模型、RNGκ~ε湍流模型和Realizableκ~ε湍流模型分别对双流体喷射泵内部的气液流动进行了模拟。对不同湍流模型下计算收敛速度,混合流体静压力变化和气体卷吸量大小进行了比较。模拟结果表明:3种κ~ε湍流模型均可很好的反应射流规律;在Realizableκ~ε湍流模型计算下,计算成本最低,流场计算收敛速度最快;在RNGκ~ε湍流模型和Realizableκ~ε湍流模型下混合流体静压力变化和气体卷吸量基本相同,均小于标准κ~ε湍流模型下的计算结果,且喷嘴速度越大,差距越明显。  相似文献   

5.
孙宗康  张笑丹  杨林军  陈帅  吴新 《化工学报》2020,71(3):1317-1325
将化学团聚与湍流团聚技术耦合,实验研究了燃煤细颗粒物在化学与湍流团聚耦合作用下的团聚与脱除效果,以及颗粒物浓度、烟气温度、团聚液喷入量与烟气流速等因素对细颗粒物团聚与脱除效果的影响规律。结果表明,典型工况下化学-湍流耦合团聚能够进一步促进细颗粒物团聚长大以及静电除尘器对细颗粒物的脱除,其作用效果优于单独的化学与湍流团聚。随细颗粒物浓度的升高,团聚与脱除效率均逐渐下降,分别由49.2%与96.7%下降至35.3%与88.2%。随烟气温度与团聚液喷入量的增加,细颗粒物团聚与脱除效率均先升高后降低,并在180℃与12 L/h处达到最高值,团聚与脱除效率分别为44.7%与94.8%。随烟气流速的增加,细颗粒物团聚与脱除效率均逐渐升高,分别由30.5%与86.3%升高至50.2%与97.5%。  相似文献   

6.
射流混合器内气体湍流扩散过程的CFD数值模拟与实验研究   总被引:1,自引:0,他引:1  
利用计算流体动力学CFD(Computational Fluid Dynamics)商业软件CFX4.4对二氧化碳与空气的射流混合过程进行数值模拟. 湍流模型采用标准k-e模型和RNG模型,模拟预测不同断面上的CO2浓度分布,并与实验结果进行比较. 结果表明,模拟预测值与实验结果基本吻合,也验证了CFD技术应用于混合扩散过程预测分析的可靠性;靠近空气一侧的CO2浓度普遍高于另一侧,当CO2平均浓度为6%时,距射流出口100 mm剖面上的浓度极差达到6%. 本研究中的气体混合湍流模型影响不明显. 采用标准k-e模型分别对两种进气方式的射流混合器内部速度场、浓度场进行模拟分析,发现T型射流混合器的混合均匀性比单边进气的射流混合器明显提高.  相似文献   

7.
气氛与湿度对燃煤飞灰颗粒声波团聚的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
杨振楠  郭庆杰  李金惠 《化工学报》2011,62(4):1055-1061
在空气、CO2以及CO2和N2混合气3种气氛下,团聚室中引入声波以强化燃煤飞灰可吸入颗粒团聚.实验结果显示,不同气氛下声波对同种颗粒具有不同的夹带效果,颗粒的团聚效果也不同.空气气氛下的颗粒质量清除效率最高,为37%.随着气体流速加快,颗粒清除效率逐渐提高,在10 m·s-1时最佳;高于这一气速,清除效率变化不大.气体...  相似文献   

8.
气流床煤气化辐射废锅内多相流动与传热   总被引:1,自引:1,他引:0       下载免费PDF全文
采用多相流动与传热模型耦合的数值方法,对气流床煤气化辐射废锅内多相流场与传热过程进行了数值模拟。在Euler坐标系中采用组分输运模型计算气体组分扩散过程,并通过realizable k-ε湍流模型计算炉内流场,煤渣颗粒运动轨迹在Lagrange坐标系中计算,并考虑了气固相间双向耦合。利用灰气体加权和模型与离散坐标法相结合,计算了炉内辐射传热过程,并考虑了煤渣颗粒的热辐射特性。结果表明:炉体入口存在张角约为10°的中心射流区,其流速和温度均较高,且周围存在明显回流区,回流区内部分颗粒富集;大部分颗粒直接落入渣池,且粒径越大落入渣池时温度越高;炉内温度分布除中心射流区,整体分布均匀,且随壁面灰渣厚度的增加而升高;计算结果与实验测量结果及文献值基本一致。  相似文献   

9.
以CFD计算软件FLUENT为平台,采用Realizablek-着湍流模型和欧拉-拉格朗日方法的离散相模型对实验室研制的潮湿细煤气流分级机内的空气流场进行数值模拟,得到分级机中流场的气流速度、流场静压、流场湍动能的分布情况,以及不同粒径细粒煤在分级机中的运动轨迹。数值计算结果表明:分级机内多孔层的设置可造成压强和流速阶跃,增强多孔层上方区域的流速,提升气体对细粒煤的携带作用;导流板的设置使入料口到细料出口间出现了较强的流带,有利于细粒煤分离;导流板和倾斜多孔层的设置使分级机内压差最大且湍流较弱,有利于颗粒分散,实现小颗粒与大颗粒的分离,提高分级效率同时也有利于中等粒径团聚体的破碎、分散,但对大粒径团聚体的分裂破坏作用有限。  相似文献   

10.
气相法制备颗粒材料的管式氧化反应器中 ,原料气通过管壁的开孔或环缝喷入反应器内与轴向流动的高温氧气流混合并反应 ,混合质量是决定颗粒产品质量的关键因素。采用k ε湍流模型对气体通过环缝喷入管内轴向气流形成的错流射流场进行了数值模拟 ,模拟结果与实验数据及有关文献进行了比较。结果表明 ,k ε湍流模型能较好地模拟管内错流射流流场的基本特征 ,可以用来预测气相氧化反应器内错流射流场的有关数值。  相似文献   

11.
以气体湍流运动方程组、kε双方程湍流模型及颗粒群运动的轨道模型为基础,气体湍流场的计算采用SIMPLE数值计算方法,颗粒群的运动方程采用RungeKuta方法求解,开发研制出相应的通用计算软件,可以理论模拟预测工程气固流动中的气体湍流场的速度分布、颗粒运动速度场及颗粒的空间运动轨迹等。  相似文献   

12.
在内径120mm的圆柱形导向管喷动流化床内,实验测定了单相气体流场的时均速度分布和湍流强度分布以及声波对它们的影响。结果表明:采用高速射流作为喷动气时,在卷吸区射流中心速度衰减快,卷吸作用强;进入导向管后中心速度开始下降仍然很快,但在经过较短距离后即趋于稳定,径向速度分布亦趋于稳定但不均匀;环隙速度分布在分布板影响下则较均匀;在喷泉区,刚离开导向管时射流中心速度仍较大,但随高度增加而较快下降,径向速度分布也趋于平缓。导向管区的湍流强度远高于环隙区和喷泉区。声波在导向管喷动流化床内单相气流中传播时衰减很小,并对时均速度几乎没有影响,但可以显著提高气流的湍流强度,且湍流强度的增加幅度随声强增加而加大,随频率增加而减小。湍流强度的增加,可以增强气流对颗粒的分散作用,有利于抑制导向管内粉体偏析,防止被射流破碎后的小聚团在环隙区发生再团聚,减少喷泉区粉体夹带,提高超细粉的流化质量。  相似文献   

13.
旋流燃烧室内气体-颗粒两相湍流流动的数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
尚庆  张健  周力行 《化工学报》2004,55(9):1434-1440
综合应用代数Reynolds应力模型和流体相脉动速度大小和方向均具有随机性的颗粒相随机轨道模型,对旋流燃烧室内有直流射流与旋转射流相互作用的气-固两相湍流流动进行了数值模拟.得到的气相轴向与切向速度和轴向脉动速度均方根值分布以及颗粒相轴向总质量流通量和轴向与切向速度分布与实验基本相符合,并比对气相湍流采用k-ε模型的相应计算结果有较明显的改进.  相似文献   

14.
《化学工程》2017,(1):40-44
为获得多射流撞击式喷嘴数值模拟研究中常用湍流模型的适用性和准确性,通过数值模拟分析了常用湍流模型计算的速度场,并与自行搭建的冷态测试实验台上测量的实验数据进行比较。结果表明:S-A模型过高地估计了交叉撞击流和主射流流动的湍流耗散,使得多射流交叉撞击形成的主射流更为平缓且更快衰减为平推流。RNG k-ε模型和标准k-ω模型计算的多射流经过交叉撞击后形成较强的主射流,RNG k-ε模型过度预测了主射流的衰减,而标准k-ω模型对主射流衰减的预测不足。标准k-ε模型、Realizable k-ε模型、SST k-ω模型和RSM模型均能较好地预测轴向速度分布情况,考虑到计算量和计算稳定性,推荐采用标准k-ε模型和Realizable k-ε模型用于多射流撞击式喷嘴湍流流动的数值计算。  相似文献   

15.
逆向气体射流对下行床颗粒混合的影响   总被引:2,自引:0,他引:2  
下行床入口结构的研究一直被人们所重视。今在内径为0.192m的下行床中颗粒达到均匀分布的部位,沿床四周均布了三个45度方向逆流场气体射流入口,在此处设立气体入口可以使颗粒分散与气固快速接触不再同时进行。采用磷光颗粒示踪技术对下行床有逆流场射流气体存在时颗粒的轴径向混合行为进行了研究。这种逆流场射流气体对下行床颗粒的轴向混合行为无明显影响,在各操作条件下下行床内颗粒均能以接近平推流的方式运动;但该射流气体可以大大加强颗粒的径向混合,有利于气固接触,在下行床颗粒径向混合越差的操作条件下,射流气体对颗粒径向混合的影响效果越明显,下行床的这种入口结构具有良好的应用前景。  相似文献   

16.
在矩形断面通风管道无因次颗粒物沉积速率计算结果与相关实验数据验证的基础上,对弯头、变径、三通等通风管道结构内的颗粒物沉积进行了数值模拟. 管道流动采用RSM湍流模型,并应用拉格朗日随机轨道模型描述气固两相流动中颗粒运动. 结果表明,直管段内无因次颗粒物沉积速率与相关研究结果变化趋势相近,直管段侧壁、顶面无因次颗粒物沉积速率在无因次松弛时间大于1时(粒径约10 mm)呈下降趋势. 弯头、变径及三通管段内颗粒物沉积率随斯托克斯数(St)增加而升高,当St<0.1时,3种管段结构内颗粒物沉积率均较小且相差较小;当St>0.1时,相同St下弯头内颗粒物沉积率最高,其次为三通和变径. 直管段内小粒径颗粒物(<10 mm)主要受湍流扩散作用而沉积,对于大颗粒的沉积则主要受重力影响;弯头、变径及三通管段内颗粒St>0.1时,颗粒物的沉积主要受惯性碰撞影响.  相似文献   

17.
超细颗粒物增湿团聚技术研究进展   总被引:1,自引:1,他引:0  
流化床内喷雾增湿可以使颗粒在不断的碰撞中发生强烈的传热传质而团聚长大。综述了颗粒物化特性、操作参数及加入团聚促进剂对颗粒团聚的影响,分析了循环流化床烟气脱硫工艺的工艺过程、床内增湿团聚机理以及综合脱除SO2以及超细颗粒物的可行性,指出增湿团聚技术可以有效提高燃煤烟气中超细颗粒物的脱除效率,有很好的应用前景。  相似文献   

18.
水泥行业开展超低排放改造已成为在“十四五”期间水泥工业绿色发展的必然趋势。采用湍流团聚技术与传统除尘设备相配合实现粉尘超低排放是一种经济可行的有效技术方案。安装团聚器前后,颗粒物排放浓度从5.62mg/Nm3降低至3.47mg/Nm3。同时,窑头篦冷机扬尘收集可提高熟料产量10.4t/d。该公司使用团聚器—布袋除尘器系统实现颗粒排放浓度低于5mg/Nm3,既实现颗粒物超低排放,又提高颗粒资源化利用率,具有良好的环境生态效益和经济效益。  相似文献   

19.
杨宁  周云龙  马书生 《化工学报》2019,70(z2):169-180
在重质原料液的射流阶段降低反应温度会导致液体呈现不同的黏度,促使颗粒聚集形成不同尺寸的团聚结构,阻碍了原料液的热量传递,减缓了裂化反应的速率,颗粒团聚是流体焦化反应工艺面临的一个重要而又具有挑战性的问题。选用水-沙系统模拟热态沥青-焦炭系统,利用气罩装置改进喷嘴结构,基于电导信号法测量多黏度液体射流过程的电导信号随时间的变化规律,研究不同条件下流化床内颗粒团聚过程。研究结果表明:多孔气罩装置可以为喷嘴射流创造理想的稀相环境,避免了液滴在射流空腔以及交换区域的聚集和压缩;液体射流在床层扩散过程中可以观察到不同的流化阶段,即颗粒润湿阶段、团聚形成阶段、团聚隔离阶段;较高的气液比可以有效地阻止颗粒团聚,相比于较低的流化气速,较高的气速条件允许高黏度糖水溶液参与液体射流。本研究为多黏度液体射流过程颗粒团聚现象的在线监测提供了理论研究基础,确保了流化床内射流液滴与颗粒表面的良好接触。  相似文献   

20.
在焦炭燃烧过程中,焦炭颗粒会对产生的氮氧化物起到一定的异相催化还原作用,但其机理仍不明确。基于焦炭颗粒内部有不同碳基和发达的孔隙结构,根据焦炭颗粒在富氧气氛下燃烧的特性,建立了焦炭氮转化的分子动力学模型和多种气体传质模型。使用FORTRAN语言编程模拟了不同富氧气氛下粒径为100μm的单颗粒焦炭的燃尽过程。结果表明:燃烧初期颗粒内部NO出现短暂的积聚现象,颗粒内部的还原能力较弱,随着反应的进行及温度的升高,还原能力增强,由于缺氧而产生了CO气体,有利于NOx的还原。对比了环境温度为1 200℃时,O2和CO2的体积分数比分别为20∶80,25∶75,30∶70的不同气氛下焦炭颗粒内部NO,CO和N2等气体的体积分数,表明O2和CO2的体积分数比为25∶75的气氛是最佳气氛,既保证了焦炭颗粒的高效燃烧,又有利于增强焦炭颗粒的还原能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号