首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
随着电梯速度的提高,带来了一系列的问题,其中包括电梯轿厢的振动和过失速的问题。大量有关高速电梯的研究专注于如何提高电梯乘坐的舒适性,在这个方面,液压主动导靴被开发出来。近年来,也有少量研究涉及电梯的安全保护,但鲜有具体实用性的成果。为提高电梯的安全性,通过借鉴汽车鼓式制动器的工作原理,开发了一种具有制动功能的电梯滚动导靴,并利用Solidworks软件对其进行三维建模。该导靴可以单独配置,也可以与限速器-安全钳系统共同作用,可切实增加电梯的安全系数。分析表明,在高速电梯系统中使用该导靴能获得良好的制动性能。  相似文献   

2.
针对高速电梯的水平振动问题,开发了一种电梯液压主动导靴。在介绍其工作原理的基础上,给出了液压主动导靴以及电梯轿厢的数学模型,并设计了模糊控制器。仿真研究表明,所设计的电梯液压主动导靴与被动导靴相比,有较好的性能,能够有效地降低电梯的水平振动。  相似文献   

3.
为研究高速电梯提升系统横向振动规律,应用Hamilton原理建立提升系统横向振动方程。以某电梯实际运行状态作为运动输入参数,求解获得轿厢和轿厢上方5 m处钢丝绳的横向振动响应曲线。改变曳引钢丝绳的提升质量、线密度和导靴的刚度系数等参数,获得不同参数下轿厢的横向振动响应。结果表明:电梯提升过程中,轿厢和轿厢上方5 m处钢丝绳的横向振动响应逐渐增加。同等条件下,减小单根钢丝绳的提升质量,增加钢丝绳的线密度,选取小刚度大阻尼的导靴,轿厢的横向振动响应较小。  相似文献   

4.
张新刚  李鸿光  孟光 《机械强度》2011,33(4):528-533
在电梯系统的设计与制造中,电梯导靴被设计成与导轨紧密接触,并运行在其上.这种导靴与导轨间的表面接触呈现出强非线性滞回摩擦特性,并进而引起电梯轿厢的纵向和横向振动,严重影响电梯运行与乘坐舒适性.在设定的参数条件组合下,实验研究电梯导靴与导轨接触面间的滑动摩擦力及其特性,并呈现出丰富的摩擦特性,如摩擦滞回、预滑动/宏观滑动...  相似文献   

5.
基于滚动导靴-导轨接触模型的高速曳引电梯振动分析   总被引:1,自引:0,他引:1  
高速曳引电梯采用滚动导靴作为稳定导向机构,但其橡胶靴衬的非线性率相关特征使其在滚轮不圆度偏差和导轨不平顺激励下会产生振动.根据Kalker三维Hertz滚动接触简化理论建立滚动导靴一导轨的三维滚动接触模型,推导了滚动导靴和导轨之间的法向、纵向和横向接触刚度系数,用于计算接触区内的法向赫兹力和切向蠕滑力.考虑滚动导靴的不圆度偏差和导轨廓形偏差,拟合出滚动导靴-导轨不平顺激励的数学模型,进而建立了高速曳引电梯系统动力学方程.采用Newmark方法对模型求解后,计算结果与某电梯实际运行时的振动信号进行时域和频域比较,仿真结果与实测结果吻合较好,表明所提出的高速曳引电梯系统动力学模型合理可行,可以很好地预测高速曳引电梯的振动响应.  相似文献   

6.
为研究高速电梯滚动导靴的水平隔振性能,采用理论建模与仿真结合的方法完成了对轿厢系统的横向振动分析.首先对电梯横向振动的原因及振动评价指标进行分析;然后对轿厢系统进行简化,建立导靴-1/4轿厢系统2自由度水平动力学模型,进而基于ADAMS进行了电梯水平振动仿真,并对比仿真与理论计算结果,分析了电梯轿厢的水平振动特性;最后...  相似文献   

7.
介绍了一种测试电梯滑动导靴系统摩擦及能耗的实验装置和方法,并针对不同的导靴产品进行了能耗及摩擦特性测定及分析。研究结果表明,接触压强越大,导靴摩擦系数越小;摩擦系数随滑动速度增大呈先上升后下降的趋势;导靴的结构对于摩擦系数、摩擦能耗也有一定的影响。  相似文献   

8.
电梯运行过程中,电梯轿厢与对重发生了碰撞,撞击后坠落的对重从井道内坠入底坑,幸好轿厢内无乘客,未造成人员伤害。经过现场勘查推断事故的原因是:维护保养人员在日常维护保养过程中对电梯导靴保养调整不到位,导靴在运行过程中与导轨间隙不断增大,导靴靴衬发生切割磨损,最终导致导靴与导轨脱离,对重与轿厢发生撞击,轿厢变形,对重坠落。  相似文献   

9.
本文针对电梯轿厢振动故障进行分析,阐述了电梯轿厢的组成,内容有轿底、轿壁、轿顶、轿厢装潢等,同时分析了导致轿厢发生振动的主要原因,如电梯曳引机称重量处在不同水平面上,曳引机蜗轮副啃咬齿轮不正、电梯曳引钢丝绳受力不均匀,固定的导靴以及滑动导靴之间的配合产生较大缝隙等。针对上述问题,探讨了如何解决电梯轿厢振动故障。  相似文献   

10.
在地震中,对重脱轨是电梯受损的主要因素。针对地震中电梯运行致使对重脱轨的现象,从对重导向系统的机械部分入手,阐述了对重导靴类型的选型、对重导轨强度、对重导靴啮合深度与加装防脱轨装置、对重的柔性连接四个方面对防止地震中对重脱轨的影响并进行了分析论证,并提出相应的改进措施和方法。  相似文献   

11.
在现代城市生活中,电梯作为高层建筑物内主要的垂直运输工具,在日常的人员输送、货物运输等各方面发挥着重要的作用。在高速电梯中,以往被动减振的局限性越来越突显出来,振动主动控制技术成为解决电梯振动的-条新途径。本文提出了一种电磁主动导靴的结构,并分析了其控制原理。通过仿真研究表明,电磁主动导靴可以有效地控制高速电梯的水平振动。  相似文献   

12.
针对导轨不平顺作用下曳引电梯轿厢的水平方向振动问题,对导轨在不同激振频率下电梯轿厢的动态特性进行了研究。设计了一套滚动导靴-导轨接触式电梯实验系统,该系统主要包含:电梯轿厢模型、滚动导靴装置以及激励系统;根据电梯系统零件繁多,轿厢、轿架结构件非标准化的情况,以及电梯固有频率经验值、相似性原理,建立了水平电梯振动分析实验平台,保证了实验系统与理论分析的契合性;将Lab VIEW数据采集技术应用到导轨的受迫振动实验中,利用DH1301型激振器给予其中一侧导轨两种不同频率的正弦激励,进行了测试,并收集了轿厢3个不同位置的水平振动加速度实验数据,并对其进行了频谱分析。研究结果表明:在不同的正弦激励频率下,激振频率越接近系统固有频率值,质心处水平振动加速度响应幅值越大。  相似文献   

13.
电梯水平动态特性对高速运行的电梯有较大影响。文中通过对高速电梯轿厢水平振动的分析,将影响电梯水平振动的导轨不平顺度、导轨的弯曲与导靴自身缺陷等重要因素转化为导轨对导靴的接触力,同时考虑到导轨长度接头方向工作过程的激励力,建立了高速电梯轿厢多自由度水平振动模型。然后,再通过MATLAB仿真得到高速电梯轿厢水平振动的动力学模型曲线,与实际测得电梯轿厢水平振动曲线有较高的吻合度,由此证明该模型方法的可行性和实用性。  相似文献   

14.
李涵 《机电信息》2012,(33):79-80
概述了电梯机械系统的工作原理,在此基础上,重点从曳引机、导轨和导靴、钢丝绳松紧均匀度、防机械共振装置检查、电梯轿厢安装是否紧固、电梯轿厢是否平衡、报闸调节7个因素出发对引起电梯系统振动问题的机械因素进行了详细分析,并提出了改进措施。  相似文献   

15.
电梯是由电力拖动系统、曳引系统、导向系统、轿厢系统、门系统、对重平衡系统、电气系统、安全保护系统组成的综合性系统,各系统在运行中受各种因素的影响容易导致轿厢出现振动现象,不仅会导致乘坐者产生不适现象,也极大地增加了电梯的安全隐患。文章基于此,首先分析了电梯运行振动产生的原因,包括曳引系统问题、涡轮蜗杆磨损、轿厢问题以及电梯滑动导靴缺油等,最后就如何采取有效的减振措施提出了对策,如定期换油、定期调整曳引钢丝绳张力、调整激振频率、加强检修力度等。  相似文献   

16.
随着电梯的普及,电梯事故也越发频繁,当电梯出现危险,其电梯核心组件—制动系统的安全性是十分重要。通过建立基于FMEDA的电梯制动系统功能安全评估,将电梯制动系统由上而下分解为传感器子模块、逻辑子模块和最终组件子模块,并且根据运行实际情况对其模块进行修正,最后以安全完整性等级来作为电梯的安全评估值,以保证电梯在紧急制动的时候的安全性。  相似文献   

17.
针对目前高速住宅电梯滚轮导靴引起的电梯振动和电梯噪声的投诉,提出了一种新型宽频降噪高寿命的电梯滚轮导靴。加入聚四氟乙烯材料层,利用其摩擦因数低、耐磨性好等特点,降低噪声,延长其使用寿命,中间设置橡胶层,减缓径向受力,降低振动。滚轮上增设小孔,利用亥姆霍兹小孔吸声原理在滚轮上形成共振腔,以达到降低运行噪声的作用。设计简单,制造成本低,具有工程应用意义。  相似文献   

18.
本文对电梯运行时导靴的非线性摩擦影响进行了数学模型分析,提出了抑制自激振动的各种措施,同时将结果推广于自动扶梯扶手带的蠕动运行和对电梯平层的影响,文中对导靴引起的瞬态振动也进行了适当的说明。  相似文献   

19.
高速电梯液压主动导靴自适应模糊控制   总被引:1,自引:0,他引:1  
在现代城市生活中,电梯作为高层建筑物内主要的垂直运输工具,在日常的人员输送、货物运输等各方面发挥着重要的作用,为了降低高速电梯的水平振动,建立了基于六自由度的电梯轿厢水平振动主动控制的动力学模型,给出了其微分方程。同时提出了一种液压主动导靴的结构,并分析了其控制原理。通过仿真研究表明,液压主动导靴采用自适应模糊控制策略,其性能优于PID控制策略和模糊控制策略,能明显降低电梯水平振动加速度值,从而达到减振的目的。  相似文献   

20.
电梯的抗震设计和实施措施   总被引:1,自引:1,他引:0  
本文论述了电梯的抗震设计问题,重点介绍电梯导轨抗震设计的计算方法和防止导靴脱轨的结构措施,并以实例说明了计算方法的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号