首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《广东化工》2021,48(18)
采用N235从某铀矿的高压浸出液中萃取回收铀。研究确定了合适的萃取条件为:萃取剂组成为5%N235+95%磺化煤油溶液,接触相比O/A为3︰2,萃取两相混合时间2 min,负载有机相操作容量为3.8 g/L,4级逆流萃取,铀的萃取率达到99%以上;负载有机相100 g/L碳酸钠溶液3级逆流反萃取,铀反萃取率达到99%以上;制备的重铀酸钠产品达到行业一级品标准。  相似文献   

2.
采用P507萃取剂对硫酸体系中的Ga3+与Fe2+, Zn2+进行萃取分离,考察了料液酸度、萃取剂浓度、时间、温度对萃取的影响,绘制萃取等温线;通过比较负载有机相中3种离子用不同浓度HCl和H2SO4反萃的效果及规律,提出用HCl洗脱Fe2+和Zn2+后,再用H2SO4反萃Ga3+的分离方案,并绘制反萃等温线. 结果表明,以40%(j) P507+磺化煤油为有机相,在相比O/A=1:1、温度25℃、时间20 min条件下,经过4级逆流萃取,Ga3+萃取率可达98.48%,同时19.56%的Fe2+和38.42%的Zn2+共萃进入有机相. 负载有机相用6 mol/L HCl洗涤3次可完全洗脱Fe2+和Zn2+而不损失Ga3+,除Fe2+和Zn2+后的负载有机相用100 g/L H2SO4按O/A=4:1、25℃、10 min,经过4级逆流反萃,Ga3+反萃率达97.64%.  相似文献   

3.
针对现行湿法炼锌综合回收铟过程中存在的铟分散损失严重和直收率低的问题,采用直接萃取法从次氧化锌酸性浸出液中回收铟,考察了萃取剂浓度、混合时间、硫酸浓度和萃取温度等因素对铟及主要金属离子萃取率及盐酸浓度和相比对铟反萃率的影响,绘制了萃取平衡等温线和反萃平衡等温线,进行了小型模拟实验和连续逆流萃取-反萃实验,重点考察主要金属离子在萃取和反萃过程中的分布与走向.结果表明,以10%P204为有机相,在相比(A/O)为2/1、逆流萃取级数为3级的条件下,浸出液中铟萃取率达99.9%,杂质铁、锌和镉的萃取率分别为1.5%,0.5%和1.1%.得到的负载有机相采用6 mol/L盐酸反萃,相比为1/5时4级反萃后,铟反萃率达100%,镉、锌和铁基本被全部反萃,反萃后的贫有机相可循环使用.  相似文献   

4.
本文以硫酸铁为料液,用2-乙基-己基膦酸-单2-乙基己基酯(P507)萃取剂在硫酸介质中萃取Fe3+。研究了温度、时间、P507的浓度、初始酸度、相比等因素对Fe3+萃取率的影响,以及有机相的反萃工艺。研究结果表明:温度为25℃,平衡时间为35min,初始氢离子浓度为0.4 mol/L,相比A/O=2/1,P507的体积分数为35%的条件下,水相经过四级逆流萃取,Fe3+的萃取率可达99.66%;反萃酸度为4 mol/LHCl,相比A/O=1/2,反萃时间为7min,经三级逆流反萃,反萃率可达到99.90%,有机相可以循环使用。  相似文献   

5.
用2-乙基己基膦酸单2-乙基己基酯(P507)作萃取剂,从铁含量高、钒含量低、杂质含量高的盐酸浸出液中萃取分离钒与铁.结果表明,在浸出液初始p H 0?0.6、萃取温度30℃、萃取时间15 min、相比(O/A)1:1及P507浓度20%(?)的优化条件下,钒和铁的单级萃取率分别为70%和5%.用硫酸作反萃剂,在反萃温度30℃、反萃时间12 min、相比(O/A)4:1及硫酸浓度368 g/L的优化条件下,钒和铁的单级反萃率分别为100%和3%.一级萃取和反萃后的反萃液含V(IV)18.62 g/L和Fe(II)0.37 g/L,分离效果良好,同时,钒与铝、钙、镁、锰等杂质也有较好的分离效果.  相似文献   

6.
采用t-BAMBP[4-叔丁基-2-(α-甲苄基)酚]+磺化煤油的萃取体系,从回收钠盐后的浓缩液中萃取分离低浓度的铷,考察了料液碱度、t-BAMBP浓度、萃取相比、洗涤相比等影响因素对铷萃取以及反萃的影响。通过实验获得了适宜的单级萃取、洗涤和反萃的工艺条件:t-BAMBP浓度为1 mol/L,料液碱度为0.6 mol/L,萃取相比O/A=3,萃取时间为2 min;洗水用0.1 mol/L的氯化钠溶液,相比O/A=3,振荡时间为5 min;反萃剂盐酸浓度为1.0 mol/L,反萃相比O/A=5,反萃时间为8 min。以此条件进行9级分馏萃取(3级萃取、6级洗涤),铷萃取率达92.95%,钾100%留在水相中;进行5级逆流反萃,铷反萃率达99.62%。该萃取工艺成功地实现了低浓度铷的高效分离。  相似文献   

7.
采用N503和TBP、正辛醇、煤油组成的复合萃取体系,对粉煤灰酸浸溶液中的铝与铁进行萃取分离,考察盐酸浓度、氯离子浓度、萃取剂比例对Fe3+萃取率的影响,以低浓度HCl溶液反萃负载铁有机相,并通过逆流实验确定最佳工艺条件. 结果表明,采用N503:TBP:正辛醇:煤油=3:1:1:5(j)的萃取体系,在初始铁浓度为0.96 mol/L、铝浓度为0.22 mol/L、萃取相比O/A=2:1条件下,经5级逆流萃取,Fe3+的萃取率大于99.8%,铝几乎没有损失. 用0.01 mol/L HCl溶液作反萃剂,反萃相比O/A=2.5:1,经6级逆流反萃,反萃液中铁浓度达1.8 mol/L. 分析了有机相负载铁前后官能团的红外光谱图.  相似文献   

8.
硫酸体系中P507对铟锌锰的萃取分离研究   总被引:1,自引:0,他引:1  
根据软锰矿和闪锌矿在酸性条件下同槽浸出所得浸出液特点(含铟、锌、锰离子),用P507萃取浸出液中的铟,分离出锌和锰。考察了平衡水相酸度(氢离子浓度)、萃取剂体积分数、萃取温度、有机相与水相体积比、萃取时间等因素对铟萃取率的影响。研究结果表明:在室温下,在平衡水相酸度为2.5 mol/L、P507体积分数为30%(30%P507+70%磺化煤油)、有机相与水相体积比为1∶1、萃取时间为10 min条件下,铟的一级萃取率在99%以上,锌和锰一级萃取率在1.20%以下,铟与锌和锰的分离达到最佳效果;负载有机相经水洗,锌和锰洗涤率为99%,铟洗涤率为0;用2.0 mol/L盐酸进行反萃,铟反萃率在98%以上,达到了富集铟分离锌和锰的目的。  相似文献   

9.
以工业硼泥为原料制备出含有铁杂质的硫酸镁浸出液,用正三辛胺(TOA)做萃取剂,磺化煤油做稀释剂,通过有机萃取来除去硫酸镁浸出液中的铁.研究了浸出液初始pH、萃取剂浓度、相比(V(有机相):V(水相))、萃取温度、萃取时间和萃取级数对Fe(Ⅲ)萃取的影响.浸出液的初始pH和TOA浓度对Fe(Ⅲ)的萃取率影响显著,随着TOA浓度的增大,萃铁率的极大值向低pH方向移动;以含30%TOA的有机相作萃取剂,在V(有机相):V(水相)=1.5:1的条件下,含铁3.5 g/L的浸出液经过3级逆流萃取,萃余液中铁含量低于0.03 g/L,铁的总萃取率高于99%.在最佳萃取条件下,产品中的铁含量可达无铁硫酸镁要求.用水热法反萃可使有机相再生,实现了有机相的循环利用.  相似文献   

10.
P507与Cyanex272协同萃取分离溶液中钴镍离子   总被引:2,自引:0,他引:2  
采用P507与Cyanex272协同萃取分离回收浸出液中的Ni2+, Co2+,考察了初始pH值、有机相复配比(P/C)和水油相比(A/O)的影响. 结果表明,协萃优化条件为:有机相皂化率50%,皂化时间30 min;有机相组成为10%复配萃取剂[P507:Cyanex272为3:2(j)]+85%磺化煤油+5% TBP;相比为3:1,水相pH值为2.5. 在此条件下,Co2+的一级萃取率为92.96%. 利用200 g/L硫酸反萃负载有机相,在相比2:3、振荡强度225 r/min、时间4 min的条件下,Co2+的反萃率为98.68%,实现了低pH值下Ni2+和Co2+的萃取分离.  相似文献   

11.
采用N235从含Mo,Mn酸浸液中萃取回收Mo   总被引:2,自引:0,他引:2  
基于软锰矿的强氧化性和辉钼矿的还原性及资源的综合利用,开发出软锰矿与辉钼矿共同焙烧新工艺,焙砂的处理及Mo, Mn分离是该新工艺的关键. 采用N235(20%)+仲辛醇(10%)+磺化煤油(70%)作为萃取剂,从含Mn, Mo焙砂酸浸液中萃取回收Mo,实验得出优化工艺条件为:萃取温度室温(25℃),相比O/W 1:2,错流萃取级数3级,水相中硫酸浓度CH2SO4≤100 g/L;反萃时先用70 g/L的硫酸溶液对萃取有机相进行洗涤,反萃剂采用17%的氨水,反萃温度为室温,相比O/W为1:2,萃取级数为3,此条件下Mo的萃取率及反萃率分别达到99.9%和99.4%.  相似文献   

12.
水相初始pH值=2. 0时,0. 3 mol/L的酸性有机磷萃取剂基本可以实现对盐酸溶液中镓的完全萃取,且萃取能力遵循萃取剂的酸度顺序:D2EHPA(99. 2%) PC88A(98. 3%) Cyanex 272(76. 9%)。随着水相初始pH值升高,越来越多的镓被萃取到有机相,且由于氢离子的释放导致较高的平衡pH值。通过FT-IR分析了D2EHPA的P=O及P-O的吸收峰明显大于PC88A、Cyanex 272。另外,3mol/L的盐酸溶液作为反萃剂对D2EHPA、PC88A、Cyanex 272的负载有机相进行反萃时,镓的反萃率达到最高,分别为81. 7%、85. 5%、93. 5%。最后,利用斜率分析法推导出三种酸性含磷萃取剂的萃取机理方程式:Ga(OH)_(2,org)~++(HA)_(2,org)=Ga(OH)_2A·(HA)_(org)+H_(aq)~+。  相似文献   

13.
研究了用氨化P507从三元锂电池电极材料硫酸浸出液中萃取镍、钴、锰,考察了萃取过程中生成沉淀的影响因素及沉淀组分,考察了萃取时震荡时间、初始水相pH及相比对镍钴锰总萃取率的影响;用串级萃取槽考察了六级逆流萃取条件下镍钴锰总萃取率,六级逆流反萃条件下反萃液pH对镍钴锰锌反萃取率的影响。结果表明:萃取过程中生成的沉淀为Ni(NH4)2(SO4)2·6H2O;为避免沉淀生成,有机相皂化率需控制在50%以内,水相中镍质量浓度需小于16 g/L,镍钴锰总金属质量浓度需小于30 g/L;对30%P507+70%磺化煤油有机相,皂化率为50%,与水相混合振荡萃取,控制Vo/VA=3/1,萃取时间4 min,单级萃取率达78.5%,六级萃取率达99.99%;反萃液控制pH控制在3左右,镍钴锰总收率为99.95%,反萃液中镍钴锰总质量浓度大于100 g/L,浓缩结晶得到的硫酸盐纯度由原来的99%提纯至99.99%。  相似文献   

14.
用N902和AD100两种萃取剂分别分离萃取废锂离子电池浸出液中的铜,考察了初始p H值、萃取剂浓度、相比(O/A)和萃取时间对铜回收率的影响.结果表明,室温下,在初始p H 3.0、萃取剂浓度20%(?)及O/A=1:1、萃取时间240 s的条件下,N902对铜的一级萃取率达98.3%;在初始p H 3.0、萃取剂浓度25%(?)及O/A=1:1、萃取时间180 s的条件下,AD100对铜的一级萃取率达97.1%.经硫酸溶液反萃后,2种萃取剂一次反萃率均高于95%,均能高效萃取分离铜,效果接近.  相似文献   

15.
混合醇萃取剂从浓缩盐湖卤水中萃取提硼的实验研究   总被引:1,自引:0,他引:1  
以2-乙基-1,3-己二醇和异丁醇按照一定体积比组成混合萃取剂、航空煤油为稀释剂,萃取某硫酸盐型盐湖浓缩卤水中的硼。对萃取剂浓度、浓缩卤水pH、萃取相比、萃取温度、萃取时间、饱和萃取容量和反萃剂浓度、反萃相比等进行了实验研究。结果表明:2-乙基-1,3-己二醇、异丁醇和航空煤油体积比为1∶2∶3,卤水pH为3,萃取相比为1∶1,温度为20℃,萃取时间为5 min;将得到的富硼有机相用0.25 mol/L氢氧化钠溶液进行反萃,反萃相比为1∶2、温度为30℃、反萃取时间为15 min。经三级萃取及反萃,卤水中硼质量浓度降为0.8 mg/L,硼萃取率为99.99%,反萃率为99.78%,硼回收率为99.77%,萃取效果好。  相似文献   

16.
以磷酸三丁酯(TBP)为萃取剂、丁酸乙酯(EB)和FeCl_3为协萃剂,煤油为稀释剂,从盐湖卤水中进行了萃取提锂的实验研究。系统考察了卤水酸度、萃取剂浓度、铁锂摩尔比、相比等因素对锂萃取率的影响。体系的最佳工艺条件为:TBP、EB、煤油的体积分数分别为40%、20%和40%;卤水酸度为0.05 mol/L;Fe/Li摩尔比为1.5;相比为O/A=2/1;反萃剂为2 mol/L的HCl,反萃相比O/A=1/1。在最佳萃取条件下,锂的单级萃取率最高可达87.12%。应用稀盐酸对负载有机相进行反萃,锂的单级反萃率超过90%。本文的研究结果表明:TBP/EB/FeCl_3/煤油体系对从盐湖卤水中分离锂具有较好的应用前景。  相似文献   

17.
《化学工程》2017,(2):17-20
世界上92%以上的铷资源存在于盐湖卤水及地下卤水中,但卤水中铷与大量的物理化学性质极为相近的钾共存,致使铷的提取技术难度极大。文中以新型铷萃取剂4-甲基-2-(α-甲苄基)酚为研究对象,探讨新型萃取剂对铷钾萃取分离的工艺条件。实验通过单因素控制法得到铷钾分离最佳工艺条件:有机相组成为1.0 mol/L萃取剂和D60溶剂油,水相中碱度为0.5 mol/L的氢氧化钠,萃取时间3 min,相比(体积比)O/A=2.5/1(相比皆为体积比);水洗相比O/A=4/1,水洗时间2 min;反萃剂为2 mol/L的HCl,反萃相比O/A=5/1,反萃时间2 min。铷单级萃取率可达到75%以上,一级萃取后铷钾分离系数可达到25以上,铷的反萃率可以达到88.5%以上。4-甲基-2-(α-甲苄基)酚具有高效的铷钾萃取分离性能,为建立高钾卤水中铷的萃取分离技术提供了一条新的途径。  相似文献   

18.
以铜熔炼烟灰浸出液为研究对象,采用N902萃取剂从中分离回收铜,并将铜元素进行富集。研究了萃取剂浓度、相比(O/A)、溶液pH值、振荡时间对铜萃取分离的影响,以及反萃剂浓度、相比、振荡时间对铜反萃率的影响。试验结果表明,在萃取剂质量分数12%、相比(O)/(A)=1∶2、溶液pH值为2.0、振荡时间6 min的萃取条件下,通过两级逆流萃取,铜、锌、铁的萃取率分别为98.26%、1.29%、2.28%;铜与铁、锌的分离系数分别达到4346和2425,实现了铜与铁、锌的有效分离。在选定反萃剂硫酸铜浓度为2.5 mol/L、相比(O)/(A)=2∶1、振荡时间6 min的条件下,通过两级逆流反萃,铜的反萃率为94.68%,反萃后铜质量浓度达到7.04 g/L,相较于浸出液中铜离子质量浓度提高了约3.72倍,实现了铜离子的富集,得到的硫酸铜溶液可用于电积铜生产。  相似文献   

19.
何川 《河南化工》2010,27(8):40-41
目的:了解溶液萃取脱酚方法。方法:用松香胺萃取处理标准含酚废水。结果:在含酚废水没有萃取之前,酚的含量达到27000mg/L,经过3次萃取之后,含酚废水里的含酚量只有16.31mg/L,废水处理前含酚27000mg/L,经3级萃取处理后,酚含量降至16.31mg/L,3级萃取的总脱酚率为99.9%。处理后的废水再经吸附处理就可达到排放标准。萃取液用NaOH质量分数为20%的水溶液作反萃剂,在反萃温度为50℃,反萃用碱量与理论碱量之比为1.4:1的条件下,经2级反萃处理后,松香胺的回收率达99%,酚的回收率达96.5%左右。结论:松香胺萃取处理含酚废水的方法是很有效的。  相似文献   

20.
《辽宁化工》2021,50(9)
研究了用新癸酸萃取剂从硫酸钴萃余液中萃取分离镍镁制得高纯硫酸镍,考察了萃取体系pH、萃取相比、萃取平衡时间、反萃过程硫酸浓度对萃取率的影响。结果表明:当有机相为45%新癸酸萃取剂+55%磺化煤油、皂化率为50%、与水相混合振荡萃取、控制V_O/V_A=1∶3、萃取时间为3 min时,单级萃取率达81.2%,四级萃取率达99%。反萃液控制pH在2~3,镍总回收率为99%,反萃液中镍总质量浓度大于90 g·L~(-1),浓缩结晶后可制备得到电池级硫酸镍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号