首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用团簇线方法和微合金化原理研究了Co基Co(-Fe)-B-Si-Nb多组元合金体系中块体非晶合金的形成。首先,确定Co-B-Si三元体系为基础体系,利用团簇线(体现在三元体系中为二元特殊团簇与第三组元的连线)在Co-B-Si体系中确定基础合金成分;然后添加少量的Nb对基础三元成分进行合金化以提高合金的玻璃形成能力。利用铜模吸铸法制备直径为3mm的合金棒,结果表明能够形成块体非晶的合金成分为(Co8B3-Si)100-xNbx(x=4~5at%),其中,Co8B3为密堆附半八面体的阿基米德反棱柱团簇结构。并且这些非晶成分可近似地用(团簇)1(胶粘原子)1模型表达,为(Co8B3)1M1(M=(Si,Nb)),即非晶成分由一个团簇连接一个胶粘原子组成,其中胶粘原子M为Si和Nb原子的组合。最后用Fe替代部分Co可进一步提高合金的玻璃形成能力,得到的Co-Fe-B-Si-Nb五元块体非晶合金具有很好的软磁性能,其饱和磁化强度(Ms)最大可达0.98T,矫顽力(Hc)低于6A/m。  相似文献   

2.
基于团簇线的Fe-B-Y基五元块体非晶合金   总被引:1,自引:0,他引:1  
陈伟荣  王清  程旭  张庆瑜  董闯 《金属学报》2007,43(8):797-802
在三元Fe-B-Y合金系中,以团簇线判据设计了5个基础合金成分,即5条成分线Fe8B3-Y,Fe8B2-Y,Fe83B17-Y,Fe6B-Y和Fe9B-Y与一条团簇线Fe12Y-B的交点.在此基础上加入微量Nb和M(M=Ti,Hf, Ta,Mo,Ni和Sn)形成五元合金,用铜模铸造方法制备出直径为3 mm的合金棒.考虑到元素B和Y在合金制备过程中的损耗,对每个合金进行了成分修正.在M=Ti,Hf,Ta和Mo时,能够形成块体非晶合金的三元基础成分均接近Fe8B3-Y与Fe12Y-B两条团簇线交点成分,表明其对应的基础团簇为Archimedes八面体反棱柱Fe8B3.最佳非晶成分为(Fe69.9B24.6Y5.5)96Nb2Ti2,其Tg=944 K,Tx=997 K,Trg=0.666.当M=Ni和Sn时,均没有得到块体非晶合金.  相似文献   

3.
Cu8Zr3和Cu10Zr7相中存在Cu8Zr5和Cu6Zr5团簇结构,它们与Cu-Zr系的两个深共晶点Cu61.8Zr38.2和Cu56Zr44对应. Cu64Zr36是Cu-Zr二元系具有最大玻璃形成能力的成分点.依据形成块体非晶的"变电子浓度线判据",以Cu64Zr36,Cu61.8Zr38.2和Cu56Zr44 3个二元成分为出发点,以Nb元素为第三组元,建立变电子浓度线(Cu64Zr36)100-xNbx,(Cu61.8Zr38.2)100-xNbx和(Cu56Zr44)100-xNbx.采用分步熔炼法,由铜模吸铸法制备直径为3 mm的合金棒.块体非晶的玻璃形成区及玻璃形成能力由XRD和热分析确定.结果表明,添加少量Nb(原子分数,x≤3)可以显著提高Cu-Zr二元系的玻璃形成能力.具有最大Tg/Ti值(0.626)的成分Cu60.3Zr37.2Nb2.5位于具有Cu8Zr5团簇和最深共晶点的Cu61.8Zr38.2向第三组元Nb的连线上.结合Cu-Zr二元体系的团簇结构讨论了Cu-Zr-Nb系块体非晶的形成.  相似文献   

4.
块体非晶合金的成分设计准则   总被引:1,自引:0,他引:1  
综述了块体非晶合金的成分设计准则,如:约化玻璃转变温度、"混乱"准则、Inoue准则、Johnson准则、原子尺寸比例准则、γ参数准则、电子浓度准则及相选择准则。并简要讨论了目前存在的问题及发展趋势。  相似文献   

5.
利用团簇+连接原子模型设计Ni-Nb基三元块体非晶成分.首先,解析出二元共晶点Ni_(59.5)Nb_(40.5)的团簇式[(Ni_(0.5)Nb_(0.5))-Ni_6Nb_6]Ni_3,其中,(Ni_(0.5)Nb_(0.5))Ni_6Nb_6为源自Ni_6Nb_7(Fe_7W_6型)共晶相的以(Ni_(0.5)Nb_(0.5))为心的二十面体团簇.相应的,具有最大非晶形成能力的Ni-Nb二元成分Ni_(62)Nb_(38)可描述成团簇式[Ni-Ni_6Nb_6]Ni_3,此时,二十面体团簇的中心位置完全由Ni占据.以[Ni-Ni_6Nb_6]Ni_3二元非晶团簇式为基础,通过引入第3组元Zr,Ta或Ag,设计出具有更高非晶形成能力的Ni-Nb-(Zr,Ta,Ag)三元合金,利用水冷铜模吸铸方法获得临界直径为3 mm的块体非晶.热分析和力学测试表明这些三元块体非晶具有较高的热稳定性,其中[Ni-Ni_6Nb_5Ta]Ni_3具有最高的玻璃转变温度T_g(935 K)和晶化温度T_x(952 K);这些三元块体非晶具有一定的塑性变形能力(延伸率约为0.3%),[Ni-Ni_6Nb_5Zr]Ni_3和[Ni-...  相似文献   

6.
Mg基块体非晶合金因其低成本和高比强度而有望成为轻质高强度结构材料,引起人们研究的极大兴趣.通过对Mg基决体非晶合金发展情况的综述研究,尤其是介绍了新成分设计和力学性能改善等方面的研究现况,发现Mg基块体非晶合金的研究主要集中在Mg-Cu基,成分设计以元素替代和合全体系元素优化为主,Mg基非晶合金塑性的改善是当前研究的重点和难点.  相似文献   

7.
选择Fe-B-Y作为基础的三元合金系,选择最密堆的CN10 Archimedes八面体反棱柱Fe8B3作为基本团簇,Y作为胶粘原子,3at%Nb作为微合金化元素,形成四元合金:(Fe8B3-Y)97-Nb3,以不同含量的Ni替换Fe,形成五元合金:[(Fe1-xNix)8B3-Y]97-Nb3(x=6、14、22、30),用吸铸法制备出直径为2 mm的块体非晶合金。结果表明,在4个非晶合金成分中,当x=6时,合金具有最高的玻璃形成能力,同时具有最好的软磁性能:饱和磁感应强度为87.7 emu/g,矫顽力为7 Oe。  相似文献   

8.
采用铜模喷铸法制备了0.5mm厚,15mm宽,20mm长的板状Fe(73.6-x)Ni1Al5Ga2P9.65BxSi3C5.75(x=6.6,7.6,8.6,9.6,at%,下同)系块体非晶合金,利用XRD、DSC和SEM,研究了样品的内部结构、热力学参数及形成能力。实验结果表明:当x=8.6,9.6时,样品则为典型的非晶合金,当x=6.6,7.6时,样品为非晶纳米晶合金;通过分析该系列合金的热力学参数,发现Trgm、Trgl和y均表现出变化一致的玻璃形成能力(GFA),而△足却恰恰相反,说明其应用有局限性;同时还构想了非晶的团簇结构,并分析了该合金系的玻璃形成能力,表明该系列合金具有较大的玻璃形成能力。  相似文献   

9.
应用团簇+胶粘原子模型在三元Fe-B-Y合金系中设计三元合金成分,选择最密堆的CN10Archimedes八面体反棱柱Fe8B3作为基本团簇,Y为胶粘原子。在此基础上添加3at%Nb作为微合金化元素形成四元合金。以适量的Ni替换Fe,形成五元合金[(Fe100-xNix)8B3-Y]97-Nb3。结果表明,当Ni的含量小于30at%时,均可形成直径为2mm的块体非晶合金,其中,合金[(Fe94Ni6)8B3-Y]97-Nb3具有最大的Tg、Tx和Trg值,分别为:884K、972K和0.634。  相似文献   

10.
应用团簇+胶粘原子模型在三元Fe-B-Y合金系中设计三元合金成分,选择最密堆的CN10 Archimedes八面体反棱柱Fe8B3作为基本团簇,Y为胶粘原子。在此基础上添加3at%Nb作为微合金化元素形成四元合金。以适量的Ni替换Fe,形成五元合金[(Fe100-xNix)8B3-Y]97-Nb3。结果表明,当Ni的含量小于30at%时,均可形成直径为2 mm的块体非晶合金,其中,合金[(Fe94Ni6)8B3-Y]97-Nb 3具有最大的Tg、Tx和Trg值,分别为:884 K、972 K和0.634。  相似文献   

11.
研究微量元素的种类与添加量对Cu55Zr38Al7铜基块体金属玻璃形成能力的影响。X射线衍射仪和差示扫描量热仪的研究表明,添加2at%的Ag、Ti、Y或Nd都可以提高Cu55Zr38Al7的玻璃形成能力;6at%的Ag替代Cu,金属玻璃棒的临界直径可从2mm增加到4mm;而复合添加2at%的Ag和Y也可以明显提高Cu55Zr38Al7的玻璃形成能力。所以,替代化学性质相似的元素或者扩大合金系的原子尺寸范围可显著提高铜基块体金属玻璃的形成能力。  相似文献   

12.
用水冷铜模吸铸方法制备了最大截面直径为2mm的Y6Fe60.5Co11.5B22铁基大块非晶合金,研究了冷却速率对合金磁性能的影响,分析并计算了合金的临界冷却速率。大块Y6Fe6.5Co11.5B22非晶合金具有良好的软磁性能:其矫顽力Hc=2.53A/m,饱和磁化强度Ms=1.24T,初始磁化率明显高于相同成分的晶态合金。热稳定性分析表明,该合金具有较高的非晶形成能力,其形成非晶的临界冷却速率(Rc)约为119K/s。  相似文献   

13.
研究了铜基块体非晶合金Cu55-x Zr37Ti8Inx(x=0~5,at%)及Cu61-x Zr34Ti5Inx(x=0~3,at%)在质量分数3.5%NaCl溶液中的耐蚀性。极化曲线结果表明,在铜基非晶合金中添加In元素能明显提高合金的腐蚀电位、降低腐蚀电流密度,即能明显提高耐蚀性。含In的铜基块体非晶合金的腐蚀电流密度(Icorr)值比不含In的铜基块体非晶合金低约1个数量级。而且,利用In适量取代Cu可进一步提高耐蚀性。但过量添加In不利于形成富Zr保护膜,从而降低合金的耐蚀性。  相似文献   

14.
近年来,为了满足具有大尺寸复杂结构的非晶合金构件的市场需求,具有高度柔性化成形、机加工量小和成形精度高等特点的增材制造技术被成功应用于制备块体非晶合金。本文基于国内外块体非晶合金增材制造成形领域的最新研究成果及作者们多年来在该领域的研究工作,系统介绍了现有非晶合金增材制造技术的研究现状,详细阐述了非晶合金在各类增材制造技术中的成形机理和性能方面的研究进展,深入探讨了现有非晶合金增材制造成形的技术难点,详细阐明了非晶合金增材制造成形工艺 - 组织结构 - 性能间内在联系,指出制备高质量高性能非晶构件将是块体非晶合金增材制造成形领域未来研究的重要方向。  相似文献   

15.
将0.075mm的Ti,Cu,Ni,Sn4种金属粉按合金成分为Ti50Cu23Ni20Sn7进行配比,并在行星式球磨机中进行机械合金化(MA)球磨。试验中的球磨机转速为300r/m,球料比为10:1。XRD和DSC分析结果表明,经过30h球磨之后,金属粉末已经全部合金化,并且为非晶态结构。继续进行球磨只能减小粉末颗粒尺寸,却会引入更多的杂质,所以30h是制备Ti50Cu23Ni20Sn7非晶合金粉末最为合适的时间。SEM下观察发现,经机械合金化所获得的非晶粉为层状团聚结构。将所制备的非晶合金粉装入碳化钨模具中,并在放电等离子烧结(SPS)设备中进行快速烧结。其烧结的温度分别为480、490、500和510℃,烧结压力为500MPa,保温时间为1min。从XRD和DSC分析结果可以看出,烧结后的合金基体为非晶结构,并伴有少量晶化相。烧结件放在光学显微镜下观察可以看到少许缩孔和疏松等烧结缺陷。将温度为490℃下烧结的试件破碎,并将断口在SEM下观察可以发现,试件断裂方式为层状脆性断裂。试验结果表明采用机械合金化和放电等离子烧结技术可以成功制备出Ti基大块金属玻璃。  相似文献   

16.
采用DSC测定FeSiB非晶粉末的玻璃态转变点(Tg)、初始晶化点(Tx)和过冷液相区(ΔTx),以此为基础,利用放电等离子烧结技术制备出了φ10mm×7mm、致密度为92.3%的块体非晶合金。采用XRD、SEM、VSM、万能试验机分析了烧结块体样品的相组成、微观形貌、磁性能和抗压强度。研究表明,当烧结条件为压力500MPa、温度360℃时,得到的块体非晶合金致密度最高,其饱和磁化强度为1.44T,抗压强度为1200MPa。400℃晶化后块体样品的饱和磁化强度为1.54T,抗压强度为2039MPa。  相似文献   

17.
通过系统的透射电子显微镜观察,在回火的Zr-Al-Ni-Cu-Ag块体金属玻璃中发现了准晶相和纳米准晶相。具有五次对称性,三次对称性及二次对称性的选区电子衍射谱及微束电子衍射谱证明初始晶化过程中析出的相为二十面体准晶。定量观察表明高的形核率是纳米准晶形成的原因。添加银有助于纳米准晶的形成。二十面体准晶相在初始晶化过程中的析出暗示着块体金属玻璃和二十面体结构之间存在着本征的相关性。  相似文献   

18.
采用放电等离子烧结(Spark Plasma Sintering,SPS)方法成功制备得到10%(体积分数)TiNb/Zr55Cu30Al10Ni5和TiNb/Cu46Zr42Al7Y5非晶基体复合材料。压缩力学实验表明,TiNb颗粒对Zr55Cu30Al10Ni5的增韧效果明显好于对Cu46Zr42Al7Y5。究其原因是Zr55Cu30Al10Ni5的塑性转变区域的长度Rp值高于Cu46Zr42Al7Y5,这就意味着TiNb颗粒分布在Zr55Cu30Al10Ni5的塑性转变区域的几率明显高于Cu46Zr42Al7Y5基体。因此,TiNb颗粒对Zr55Cu30Al10Ni5基体的增韧效果明显要好于Cu46Zr42Al7Y5。  相似文献   

19.
在一定初始温度下经过不同时间的熔体过热处理,利用铜模吸铸法,制备纯非晶合金Zr_(48)Cu_(36)Ag_8Al_8棒状试样,通过X射线衍射仪(XRD)、差示扫描热分析仪(DSC)、万能力学试验机和场发射扫描电子显微镜(SEM)研究过热处理对其力学性能的影响。结果表明,在一定的处理时间范围内,随着处理时间的增长,Zr_(48)Cu_(36)Ag_8Al_8非晶合金原子排列的混乱度增加,非晶合金的平均自由体积增加,Zr_(48)Cu_(36)Ag_8Al_8非晶合金的变形局域化程度降低,变形能力随之增强,非晶合金的断裂强度和塑性得到了提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号