首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscosities of binary mixtures of cyclohexane with protiobenzene, C6H6, or deuteriobenzene, C6D6, have been measured at 298 and 323 K and at pressures up to 50 MPa using a capillary viscometer. The viscosities of these mixtures obtained were represented by a empirical Tait-type equation within the experimental uncertainty of ±2%. The effect of the isotopic substitution on the viscosity has been discussed.  相似文献   

2.
3.
Abstract

Viscosities of the ternary acrylonitrile‐acetonitrile‐water mixture and the binary mixtures composed of its constituents have been determined at 278°K by Ostwald‐type viscometers. The theory of viscosity of liquid mixtures suggested by McAllister is used in the treatment of data. 3‐body and 4‐body models give excellent correlations for the systems of acrylonitrile‐acetonitrile and acetonitrile‐water, while for the systems of acrylonitrile‐water and acetonitrile‐water at least a 5‐body model will be necessary to describe the viscosity‐concentration data accurately.  相似文献   

4.
Viscosities of six higher 1-alkanols (1-hexanol, 1-octanol, 1-decanol, 1-dodecanol, 1-tetradecanol, and 1-hexadecanol) have been determined at temperatures from 298 to 348 K and pressures up to 200 MPa. The viscosity measurements were performed using a falling-body viscometer with an uncertainty of ±5%. Simple equations are presented to express the experimental viscosities as a function of temperature and pressure within the experimental uncertainty. The relationship between the viscosity and the density of these alkanols is discussed in terms of the significant structure theory extended to high pressures.  相似文献   

5.
Viscosities for the ternary mixtures, 1,4-dioxane + 1-butanol + cyclohexane and 1,4-dioxane + 2-butanol + cyclohexane, were determined at temperatures of 298.15 and 313.15 K. From these data the viscosity deviations were calculated and they are negative over the whole composition range. The results have been compared to predictions by the group contribution method proposed by Wu.  相似文献   

6.
Equilibrium molecular dynamics simulations of mixtures of n-decane with methane, ethane, and carbon dioxide and of the mixture carbon dioxide–ethane were performed using the anisotropic united atoms model for n-decane and one-and two-center Lennard–Jones models for the light components. The Green–Kubo relations were used to calculate the viscosity, thermal conductivity, and inter- and intradiffusion. Viscosities are predicted with a maximum deviation of 30% at low gas concentrations and less than 10% deviation at high gas concentrations. The viscosity and thermal conductivity are less sensitive to the cross interactions than the diffusion coefficients, which exhibit deviations between models and with experiments of up to 60%.  相似文献   

7.
This paper is the second in a series of viscosity and density studies on multicomponent mixtures of n-alkanes from 303 to 338 K. Reported here are the results of binary mixtures of n-tetracosane + n-octane as well as quaternary mixtures of n-tetracosane + n-octane + n-decane + n-hexane at 318.16, 328.16, and 338.16 K. Viscosities were determined using a standard U-tube Ostwald viscometer, and densities were determined using a flask-type pycnometer. Empirical relations tested include the Grunberg and Nissan equation and the method of corresponding states. In addition, comparisons were made regarding the behavior of this quaternary system and homologous binary mixtures of n-hexadecane + n-octane and n-tetracosane + n-octane at the same temperatures.  相似文献   

8.
Viscosities and densities of the n-alkanes, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, hexadecane, and tetracosane, were measured for temperatures from 303 to 338 K. Viscosities were measured using a standard Utube Ostwald viscometer; a pycnometer was used to measure both pure alkane and mixture densities. Results for the binary system n-hexadecane + n-octane at 318.16, 328.16, and 338.16 K are presented here, and comparisons with selected correlating equations are made.  相似文献   

9.
Densities of aqueous solutions of 2,2,2-trifluoroethanol, 2,2,3,3-tetranuoropropanol, and 2,2,3,3,3-pentanuoropropanol have been measured with a vibrating-tube densitometer. Measurements were performed at temperatures of 298 and 323 K and at pressures up to 80 MPa with an estimated uncertainty of ±0.2 %. Molar volumes obtained for these mixtures are correlated with pressure by the Tait equation within the experimental uncertainty. Excess molar volume, isothermal compressibility, and partial molar volume of these mixtures are determined in terms of this correlation equation and compared with those of the aqueous solutions of hydrocarbon alcohols. Composition dependence of partial molar volume is discussed in comparison with that of Raman spectroscopic data.  相似文献   

10.
Viscosities and densities of seven binary mixtures of n-hexane, n-octane, isooctane, n-propylamine, n-butylamine, n-hexylamine, and n-octylamine with triethylamine have been measured at 303.15 and 313.15 K. Deviations of viscosities from a linear dependence on the mole fraction and values of excess Gibbs energy of activation G *E of viscous flow are attributable to the H-bonding and to the size of the alkylamine and alkane molecules.  相似文献   

11.
Viscosity and density measurements have been carried out for binary mixtures composed of methylcyclohexane + cis-decalin in the temperature range 293.15 to 353.15 K and at pressures up to 100 MPa. The viscosity was measured with a falling-body viscometer, except at atmospheric pressure where an Ubbelohde viscometer was used. The experimental uncertainty for the measured viscosities is 2%. The density was measured up to 60 MPa and extrapolated by a Tait-type relationship to 100 MPa. For the reported densities the uncertainty is less than 1 kgm–3. An evaluation of the simple mixing laws of Grunberg and Nissan and of Katti and Chaudhri, which require only the density and viscosity of the pure compounds, showed that they can represent the viscosity of the binary mixtures with an average absolute deviation of 2%, corresponding to the experimental uncertainty.  相似文献   

12.
The thermal conductivities of nitrogen and three mixtures of nitrogen and methane at six nominal temperatures between 300 and 425 K have been measured as a function of pressure up to 16 MPa. The relative uncertainty of the thermal conductivity measurements at a 95% confidence level is estimated to be less then 1%. The data obtained and the results of the low-density analysis were used to test two prediction methods for the thermal conductivity of gas mixtures under pressure and for the thermal conductivity of dilute polyatomic gas mixtures. Reasonable agreement was found with expressions for predicting thermal conductivity of nonpolar mixtures in a dilute-gas limit developed by Schreiber et al. The scheme underestimates the experimental thermal conductivity with deviations not exceeding 3%. The prediction scheme for the thermal conductivity of gas mixtures under pressure suggested by Mason et al. and improved by Vesovic and Wakeham underestimates the experimental thermal conductivities throughout, likely due to its use of the Hirchsfelder–Eucken equation at the low-density limit.  相似文献   

13.
New absolute measurements of the thermal conductivity of ethylene and propylene glycol and their mixtures with water are presented. The measurements were performed in a tantalum-type transient hot-wire instrument at atmospheric pressure, in the temperature range 295–360 K. The overall uncertainty of the reported values is estimated to be less than ±0.5%, an estimate confirmed by measurements of the thermal conductivity of water. The mixtures with water studied have compositions of 25, 50, and 75%, by weight. A recently proposed semiempirical scheme for the prediction of the thermal conductivity of pure liquids is extended to allow the prediction of the thermal conductivity of these mixtures from the pure components, as a function of both composition and temperature.  相似文献   

14.
New measurements of the viscosity of binary mixtures of toluene+cyclopentane are presented. The measurements, performed in a vibrating-wire viscometer, cover the temperature range from 210 to 310 K at pressures up to 25 MPa. The concentrations studied are 60 and 30%, by weight, toluene. The uncertainty of the measurements, confirmed at room temperature and higher temperatures with the measurement of the viscosity of water, is estimated to be ±0.5%, increasing to ±1% at temperatures below 240 K. The present measurements are employed to examine the predictive power of two recent theoretically based schemes proposed for the calculation of the viscosity of mixtures.  相似文献   

15.
New absolute measurements of the thermal conductivity of mixtures of methanol, ethanol, and propanol with water are presented. The measurements were performed in a tantalum-type transient hot-wire instrument at atmospheric pressure, in the temperature range 300–345 K. The overall uncertainty of the reported values is estimated to be less than ±0.5%, an estimate confirmed by measurements of the thermal conductivity of water. The mixtures with water studied have compositions of 25. 50, and 75%, by weight, of methanol and ethanol and 50%, by weight, of propanol. A recently proposed semiempirical scheme for the prediction of the thermal conductivity of pure liquids is extended to allow the prediction of the thermal conductivity of these mixtures from the pure components, as a function of both composition and temperature.  相似文献   

16.
Viscosities of molten alkali-metal bromides and iodides, whose reported values are scattered, have been measured by the use of a capillary viscometer made of quartz which is newly designed to obtain a high precision. The viscometer consists of the quartz capillary with a funnel of the suspended level type, and the melt is sealed in it under vacuum. The total error in the measurement is estimated to be within 0.7% at high temperatures. Viscosities of all the alkalimetal bromides and iodides show similar values at a constant temperature. Viscous flow behaviors of all the alkali-metal halides are discussed based on the activation energy and the hard sphere model. The apparent activation energy increases with an increase in the melting temperature of the salt. The viscosity of the alkali-metal halide melt at the melting temperature increases as the ratio of hard sphere volume to hole volume calculated from the surface tension.  相似文献   

17.
In this article, measurements of the thermal conductivity of humid air as a function of pressure, temperature, and mole fraction of water, for pressures up to 5 MPa and temperatures up to 430 K, for different water contents (up to 10 % vapor mole fraction) are reported. Measurements were performed using a transient hot-wire apparatus capable of obtaining data with an uncertainty of 0.8 % for gases. However, as moist air becomes corrosive above 373 K and at pressures >5 MPa, the apparatus, namely, the pressure vessel and the cells had to be modified, by coating all stainless-steel parts with a titanium nitride thin film coating, about 4 μm thick, obtained by physical vapor deposition. The expanded uncertainty (coverage factor k = 2) of the present experimental thermal conductivity data is 1.7 %, while the uncertainty in the mole fraction is estimated to be better than 0.0006. Experimental details regarding the preparation of the samples, the precautions taken to avoid condensation in the tubes connected to the measuring cell, and the method developed for obtaining reliable values of the water content for the gas mixtures are discussed. A preliminary analysis of the application of the kinetic theory of transport properties in reacting mixtures to interpret the complex dependence of the thermal conductivity of humid air on water composition is addressed.  相似文献   

18.
Molar heat capacities at constant volume C v were measured for binary refrigerant mixtures with an adiabatic calorimeter with gravimetric determinations of the amount of substance. Temperatures ranged from 200 to 345 K, while pressures extended up to 35 MPa. Measurements were conducted on liquid samples with equimolar compositions for the following binary systems: R32/R134a, R32/R125, R125/R134a, and R125/R143a. The uncertainty is 0.002 K for the temperature rise and is 0.2% for the change-of-volume work, which is the principal source of uncertainty. The expanded relative uncertainty (with a coverage factor k=2 and thus a two-standard deviation estimate) for C v is estimated to be 0.7%.  相似文献   

19.
The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China.  相似文献   

20.
A method for predicting the viscosity of supercritical, multicomponent fluid mixtures, at any density, from the zero-density viscosity of pure components is presented. The method is based upon the results for a rigid-sphere model, suitably interpreted to apply to real fluids, and on the finding that the excess viscosity of pure supercritical fluids can be adequately described by a density function independent of temperature. The density range of the method extends to twice the critical density of the pure component with the smallest critical density. The only exception is for the methane-rich mixtures where the mixture density should not exceed 12000 mol·m–3. The uncertainty ascribed to the predictions made by this method is of the order of ±5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号