首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
边坡工程是一个动态开放、非线性的复杂系统,应用传统的分析方法往往难以确切描述其非线性特性,采用学习率自适应调整和动量法,对BP神经网络存在易陷入局部极小值、收敛速度慢、对神经元个数依赖性大等缺点进行改进,建立了(6-13-2)结构的自适应BP神经网络模型。边坡预测实例表明:自适应BP神经网络的预测精度高于标准BP神经网络;改进后的BP神经网络提高了网络的训练速度,节省了时间,提高了计算精度。  相似文献   

2.
将MATLAB中的BP神经网络引入到边坡稳定性研究中,但由于标准的BP算法存在收敛速度慢、容易陷人局部极小点等缺点,为此采用各种改进及优化的算法,以寻求更适合边坡稳定性预测研究的算法。本文结合了大量边坡实例,经过理论分析和实例测试,能显著提高训练速度、减少收敛周期,达到很好的边坡稳定性预测结果。  相似文献   

3.
边坡稳定性研究内容具有非线性,复杂性,影响因素繁杂等特点,为了寻求对于边坡稳定性更加准确的评价,提出基于K-means聚类及神经网络的边坡稳定性评价模型,并发现K-means神经网络运用在边坡稳定性分析中具有可行的预测性及良好的精确度。针对K-means聚类对数据内在结构高效分层归并能力及神经网络自学习能力的优缺点,选定45组实验数据,并选择其中容重、内摩擦角、黏聚力、坡角、坡高、孔隙水压力比6个影响因素,通过改进的K-means聚类方法进行分析并筛选出有效数据,再通过神经网络对输入的数据进行大量训练不断调整权值,输出稳定性评价安全系数。预测结果显示,此模型对边坡稳定性评价预测能力高于同类型分析方法。  相似文献   

4.
基于我国湖库富营养化评价标准和RBF、GRNN、BP、Elman神经网络算法原理,分别构建RBF等4种神经网络湖库富营养化等级评价模型,采用内插法构造网络训练样本,把我国湖库富营养化评价等级临界值作为评价样本进行“预测”,将“预测”结果作为湖库富营养化程度评价等级的划分依据,对全国24个主要湖库富营养化程度进行评价。结果表明:RBF、GRNN、BP、Elman神经网络模型对全国24个主要湖库富营养化程度评价结果基本相同,表明研究建立的RBF等4种神经网络湖库富营养化程度评价模型和评价方法均是合理可行的,其评价精度高,可为湖库富营养化程度评价提供新的途径和方法。同BP和Elman网络算法相比,RBF与GRNN神经网络模型不仅对湖库富营养化程度评价结果完全相同,且模型具有收敛速度快、预测精度高、调整参数少(只有SPREAD参数),不易陷入局部极小值等优点,可以更快地预测评价网络,具有较大的计算优势。  相似文献   

5.
基于模拟退火神经网络模型的岩质边坡稳定性评价方法   总被引:5,自引:0,他引:5  
 针对BP神经网络收敛速度慢、易陷入局部极小的缺点,将具有全局搜索能力的模拟退火(SA)算法引入到神经网络的权值优化中。并且在SA算法中引入状态接受过程和退火过程的自适应措施,增加了对当前状态最优解的"记忆能力",避免了当前最优解的遗失,提高了算法的搜索效率。通过对XOR问题求解的比较,显示出SABP算法具有全局收敛且精度高的优越特性。最后基于实际工程的边坡数据建立了一个SABP算法模型,成功解决了具有高度非线性特点的边坡稳定性评价问题。  相似文献   

6.
甘海龙 《红水河》2023,42(1):122-126
为检验神经网络在水电站库区边坡稳定性预测的可行性,通过结合原始数据PCA及神经网络的模式识别特性,构建神经网络模型,对38组实测数据进行PCA处理,选取32组数据作为神经网络输入端数据、6组数据验证神经网络的工作性能。结果表明,神经网络对水电站库区边坡稳定性模式识别率达到83.3%。训练良好的神经网络可以用于工程实践中的水电站库区边坡稳定性预测。  相似文献   

7.
高陡岩体边坡的稳定性是一个内部存在多种相互联系、相互影响因素的复杂系统,而BP人工神经网络属于非线性动态系统,较适合用于评价高陡岩体边坡稳定性.分析了BP网络模型参数对高陡岩体边坡稳定性评价精度的影响,并提出了对模型参数进行优化,以提高预测精度的若干办法.用一工程实例对参数优化后的BP神经网络在高陡岩体边坡稳定性评价中的应用效果进行了检验.研究表明,用经参数优化的BP人工神经网络模型预测高陡岩体边坡稳定性是可行的,预测结果虽然与实际状态存在一定的误差,但仍可以相对准确地反映边坡稳定状况.  相似文献   

8.
针对线性组合预测模型预测精度不高、单一预测模型权重较难确定和非线性组合预测模型组合函数难以构造等问题,为最大限度地挖掘输入向量间的有用信息以及充分发挥神经网络模型的高度非线性映射能力,提出一种基于BP、Elman、RBF、GRNN这4种神经网络算法原理的多重组合年径流预测模型。以4种单一预测模型的预测结果作为一次组合预测模型的输入向量,实测流量作为输出向量,构建4输入1输出的一次组合预测模型;再以一次组合预测模型预测结果作为二次组合预测模型的输入向量,实测流量作为输出向量,构建4输入1输出的二次组合预测模型;依次类推,构建12种多重组合预测模型。以新疆伊犁河雅马渡站年径流预测为例,将预测结果与4种单一预测模型及IEA-BP模型的预测结果进行比较,结果表明:多重组合预测模型的预测精度和泛化能力较单一预测模型均有较大提高,随着模型组合重数的增加,预测精度呈提高趋势,是提高预测精度的有效方法。  相似文献   

9.
BP神经网络在鱼洞河滑坡稳定性评价中的应用   总被引:7,自引:1,他引:7  
 以边坡高度、边坡角度、岩土重度、粘聚力、内摩擦角等作为输入模式变量,建立BP人工神经网络训练样本集以之用作滑坡稳定性评价。通过对网络学习参数的优化,如学习速率为0.9,学习步长为0.7,在迭代12 589次网络训练后样本收敛。以此为基础,建立BP神经网络各隐含层的连接权重和阈值,进行模式识别,完成了鱼洞河边坡状态和稳定系数的计算。计算结果表明,鱼洞河边坡处于破坏(不稳定)状态,稳定系数为1.100 5  相似文献   

10.
RBF与GRNN神经网络模型在城市需水预测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对需水量预测具有受诸多因素影响的复杂、高维和非线性等特性,本文基于RBF与GRNN神经网络算法原理,构建RBF与GRNN神经网络需水预测模型,将模型应用于城市需水预测中,并与基本BP神经网络模型以及灰色GM(1,1)需水预测模型的拟合、预测结果进行了对比分析.结果表明:①RBF与GRNN神经网络模型有着较高的拟合、预测精度,平均相对误差均在5%以内,表明研究建立的RBF与GRNN神经网络模型应用于需水预测是合理可行的,模型泛化能力强,预测精度高,算法稳定,与基本BP网络算法相比,RBF与GRNN网络模型还具有收敛速度快、调整参数少和不易陷入局部极小值等优点,可以更快地预测网络,有着良好的应用前景.②相对而言,RBF与GRNN神经网络模型预测精度要优于基本BP网络和灰色GM(1,1)模型.  相似文献   

11.
GRNN在边坡稳定预测分析中的应用   总被引:1,自引:1,他引:1       下载免费PDF全文
介绍广义回归神经网络(GRNN)的原理和影响因素,论述光滑因子的影响和选择。采用LOO交叉验证方法遍历所有样本,搜索出合适的光滑因子,结果表明合适的光滑因子能够较大幅度地提高网络泛化能力。应用收集到的82个圆弧滑面边坡稳定状态的实例资料,将GRNN模型应用于边坡稳定性评价,计算结果表明,在边坡稳定状态分析及预测方面,GRNN模型比BPNN模型更加精准简捷。  相似文献   

12.
阎坤  张云 《水力发电》1996,(8):27-29
岩质高边坡爆破动力稳定分析方法研究于题从属于专题“岩质高边坡开挖及加固技术研究”项目,主要研究内容为分析岩质高边坡在爆破振动激励下的稳定状态。在对实测资料进行分析的基础上,建立了岩质边坡爆破振动全历程拟合方程,给出了爆破振动的全历程稳定分析方程,描述了岩体在爆破振动下稳定系数随时间的变化情况。结合李家峡左岸高边坡开挖的有关爆破设计、测试资料,给出了实际岩质高边坡爆破动力稳定计算分析结论,探讨了爆破分区设计的合理性。  相似文献   

13.
针对RBF神经网络容易出现局部最优解和收敛速度慢的问题,提出引入惯性权重来改进混合蛙跳算法,继而用改进方法优化RBF神经网络。改进的混合蛙跳算法通过设定一个合理的初始权重,从而达到修正青蛙群体的更新策略、跳出局部最优解、避免早熟的目的,同时具有平衡全局搜索和局部搜索的能力,很好地解决了传统RBF神经网络局部最优和收敛速度慢的问题。以某大坝位移分析为例,采用基于改进蛙跳算法的RBF神经网络后,模型预测精度有了较大的提高,与工程实际更为接近,具有一定的工程实用价值。  相似文献   

14.
胡瑞华  冯德顺 《人民长江》2011,42(22):98-100
针对现场地质编录难度大、危险程度高、工作量大以及资料难以保存等问题,利用计算机技术开发了快速编录技术。该技术的开发为近直立高陡边坡结构面的分析提供了一种十分简便直观的工具,可以根据野外结构面精确的线路测量,通过窗口统计及结构面影像的室内统计分析,掌握边坡岩体结构面的发育组合规律,进而对边坡的稳定性做出客观正确的评价,方便设计人员拟定治理加固方案。将该技术应用到三峡库区某高切边坡加固治理中,取得较好的效果。  相似文献   

15.
神经网络方法在结构优化计算中的应用   总被引:1,自引:0,他引:1  
人工神经网络是由与人脑相似的简单处理单元(即神经元)所构成的大规模复杂非线性动力学系统,神经计算具有分布式存贮、并行处理,自适应学习能力强以及非线性映射能力强等特点,显示出运算迅速,响应灵活,容错性好,应用人工神经网络理论,构造了工程结构优化的人工神经网络模型;分析了神经优化计算的主要过程,编制了工程结构优化的神经计算程序,通过对十杆桁架结构的神经优化计算进行数值仿真,结果表明神经网络方法具有良好的计算精度和较快的收敛速度。  相似文献   

16.
反向传递神经网络在水泥土无损检测中的应用   总被引:3,自引:1,他引:3  
通过水泥搅拌土室内试验,研究了水泥搅拌土的各种物理力学特性,根据试验数据建立了水泥搅拌土无侧限抗压强度、灰土比与养护条件、养护时间、纵波波速、横波波速的神经网络模型,然后对水泥土的强度和灰土比进行计算和预测。研究结果表明,神经网络模型不仅可以综合考虑各种因素的影响,而且具有较高的预测精度,是一种很好的无损检测信息处理工具,在岩土工程无损检测中具有广阔的应用前景。  相似文献   

17.
闫英战  杨勇  陈爱斌 《人民长江》2010,41(15):27-30
可拓神经网络是可拓学与人工神经网络的有机结合,能够更好地模拟人脑神经系统思维等智能行为。讨论了神经网络物元模型、神经网络的物元可拓性及基本物元变换,并利用可拓学的扩缩变换,通过在输出空间中用一个区域来代替BP神经网络的训练停止区域,极大地提高了神经网络的训练速度。以几个主要指标作为衡量水质优劣的标准并作为神经网络的输入样本,建立可拓神经网络训练水质的模型,并与普通BP神经网络进行训练速度和训练效果比较,实验表明,用可拓神经网络对水质的评价效果更为明显。  相似文献   

18.
基于MATLAB软件,建立BP神经网络模型,以盘龙河干流上下游水文站月均流量和水位为研究对象,对人工神经网络研究方法在水文预测中的应用进行了初步尝试.结果表明该方法预测成功率较高,并分析了该方法在预测过程中的优缺点.  相似文献   

19.
土坝观测数据的模糊人工神经网络分析   总被引:6,自引:0,他引:6  
陈继光  吕学昌 《水利学报》2000,31(1):0019-0023
本文介绍了土坝观测数据的模糊人工神经网络分析方法,讨论不同影响因素与大坝位移变形量间的模糊关系,并在此基础上应用模糊人工神经网络进行位移量的预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号