首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of annealing and annealing with a superimposed pressure of 940 MPa on the primary crystallization behaviour of α-Al and the resulting micro-hardness have been studied for as-quenched Al87Ni7Gd6 metallic glass. Isothermal annealing experiments were conducted for 30 min at 188 °C, 191 °C, and 205 °C in silicone oil maintained either at atmospheric pressure (i.e. 0.1 MPa) or at 940 MPa. XRD analyses detected the evolution of structure with annealing at 0.1 MPa, while specimens annealed with 940 MPa pressure exhibited sharper diffraction peaks than those annealed at 0.1 MPa. DSC measurements were conducted on the as-received amorphous ribbons as well as ribbons annealed at different temperatures at either 0.1. MPa or with 940 MPa superimposed pressure. Specimens annealed with 940 MPa pressure exhibited higher onset temperatures (i.e. Tx1) and temperatures for the first exothermic peak (i.e. Tp1) for primary crystallization. TEM measurements revealed an increase in the volume fraction of α-Al with increases in annealing temperature, while micro-hardness measurements revealed an increase in hardness with increasing amounts of α-Al. Specimens annealed with 940 MPa pressure exhibited further increases in both the volume fraction of α-Al and resulting micro-hardness.  相似文献   

2.
Phase equilibria of the Cd–Sb–Zn system have been investigated by metallographic examinations, DSC, XRD and WDS measurements. At 250 °C, the ternary diagram shows two three-phase fields, (Zn)+(Cd)+Zn4Sb3 and (Cd)+ Zn4Sb3+(Zn,Cd)Sb. Continuous solid solution has been found between ZnSb and CdSb. Solubility of Cd in Sb3Zn4 was determined to be about 43 at.%. A variant of the reaction scheme is proposed for the Cd–Sb–Zn system to understand phase relations observed at 250 °C.  相似文献   

3.
The microstructural evolution of a Pd40Ni40P20 bulk metallic glass that was isothermally annealed at 260 °C for 14 h, and then aged at 340 °C for times up to 1280 min has been studied. Differential scanning calorimetry (DSC) curves of the aged samples show an endothermic peak at approximately 370 °C in addition to the ubiquitous glass transition. The endothermic peak appears after 20 min aging and disappears after 320 min aging. The corresponding X-ray diffraction (XRD) data show no Bragg peaks that could indicate the formation of a crystalline phase. Near-atomic-resolution atom probe tomography (APT) was used to study changes in the atomic spatial distributions as a function of aging time. The chemical environment around each of the atomic species, and the tendencies for solute clustering and chemical short range ordering, were determined from statistical analysis of the APT data. Clustering and possible phase separation are identified by APT after only 20 min aging at 340 °C, which correlates with the appearance of the peak in the DSC signal. Crystallization is apparent in the APT and XRD data after aging for 320 min. The study suggests that the amorphous Pd40Ni40P20 annealed at a temperature 40 °C above Tg phase separates into two or more amorphous phases. The endothermic peak in the DSC trace is produced by the dissolution of the phase separation.  相似文献   

4.
In the present work an elemental powder mixture of Al60Fe15Si15Ti10 (at.%) was mechanically alloyed in a high-energy ball mill. A part of the milling product was examined in a calorimeter, while another portion was subjected to consolidation by hot-pressing at 1000 °C for 180 s under a pressure of 7.7 GPa. The results obtained show that a nanocrystalline cubic phase with the lattice parameter a0 = 11.645 Å, isomorphous with the τ2 (Al2FeTi) phase, is formed during mechanical alloying process. Heating of the milling product in the calorimeter up to 720 °C causes limited growth of grains, however the τ2 phase remains nanocrystalline with the mean crystallite size of 28 nm. Grain growth takes place during consolidation of the milling product as well, although the τ2 phase remains nanocrystalline with the mean crystallite size of 34 nm. The microhardness of the bulk nanocrystalline sample is 1013 HV0.2 and its open porosity is 0.3%. The results obtained show that the quality of compaction with preserving nanometric grain size of the τ2 phase is satisfactory and its microhardness is relatively high.  相似文献   

5.
The Al2O3-SiO2(sf) (volume fraction, 20%)/Al-12.6Si metal matrix composites(MMCs) with or without rare earth Pr addition were fabricated by infiltration squeeze method. Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM. Tensile properties at room temperature and 200 °C were tested. It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively. Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix. Yield strength(σ0.2), ultimate tensile strength(σb) and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr. Compared with those values of Al-Si based MMC at 200 °C, σ0.2 and σb of MMC with 0.29% Pr are increased by 33% and 55%, respectively. The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features.  相似文献   

6.
Zr–(Ti)–Cu–Al–Ni metallic glasses exhibit a high thermal stability corresponding to a wide undercooled liquid region. Depending on their composition, the formation of metastable intermediate phases, e.g. a quasicrystalline phase is possible. The combination of early and late transition metals makes these alloys very interesting regarding their interaction with hydrogen. Amorphous Zr55Cu30Al10Ni5, Zr65Cu17.5Al7.5Ni10 and Zr59Ti3Cu20Al10Ni8 ribbons were prepared by melt spinning and their microstructure and thermal behaviour was checked by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The cathodic reactivity of alloy samples at different microstructural states and after pre-etching in 1 vol.-% HF was investigated in 0.1 M NaOH by applying potentiodynamic polarisation techniques. Galvanostatically hydrogenated samples were characterised by XRD, DSC, TEM and thermal desorption analysis (TDA). For amorphous Zr59Ti3Cu20Al10Ni8 samples an increase in electrochemical surface capacity by two orders of magnitude is observed after pre-etching. Compared to the quasicrystalline and crystalline alloy, the hydrogen reduction takes place at significantly lower overpotentials. Zr-based alloys cathodically absorb hydrogen up to H/M=1.65 while keeping the amorphous structure. Already small amounts of hydrogen cause a significant decrease of the thermal stability and changes in the crystallisation sequence. The hydrogen desorption is a two-stage process: (T<623 K) hydrogen desorption from high interstitial-site energy levels and (T>623 K) zirconium hydride formation and subsequent transformation under hydrogen effusion. Hydrogen suppresses the oxygen-triggered formation of metastable phases upon heating and supports primary copper segregation. At very high H/M ratios, severe zirconium hydride formation causes the crystallisation of new compounds.  相似文献   

7.
Mg0.4Al2.4O4 single crystals with good optical quality were successfully grown by the Czochralski method. The transmission spectrum indicated that the absorption edge of the crystal was at 220 nm, while no apparent absorption peaks were found. The X-ray diffraction and DSC curve analysis showed that Mg0.4Al2.4O4 crystal was stable at room temperature. While after annealing in the air and hydrogen atmosphere at about 1200 °C, Mg0.4Al2.4O4 decomposed into Al2O3 and (MgO)0.4(Al2O3)x (0.4 < x < 1.2). The reaction mainly occurred on the crystal surface, barely inside.  相似文献   

8.
The preparation of nanostructured (ZrO2–5 wt.% Y2O3)–20 wt.% Al2O3 coatings by atmospheric plasma spraying of commercially available micron-scale powders is reported. Materials were prepared by means of a standard spraying technique and by using an improved technique that allows for the quenching of the material using liquid nitrogen-cooled substrates. Quenching leads to the controlled formation of metastable phases. The influence of liquid nitrogen cooling on the formation of the metastable phases was studied by X-ray diffraction under a grazing incidence angle of 1°. A significant increase in the amount of the metastable zirconia phase and a more homogeneous composition along the thickness were found compared to the regularly sprayed coatings. All materials were subjected to a thermal treatment for 1 h at 1400 °C to study the evolution of stable phases.  相似文献   

9.
Complex Mg2CoH5 hydride was obtained by a combined procedure that included a milling stage of a 2Mg–Co mixture under argon followed by reactive mechanical alloying (RMA) under hydrogen, both at room temperature. During RMA, MgH2 is produced at short milling times (10 h) and Mg2CoH5 (50 wt%) after 90 h. Improvement in the yield and the formation times could be associated with both refinement of microstructure and enhancement of intermixing of Mg–Co during pre-milling stage. DSC studies of Mg2CoH5 phase produced by RMA show that the starting decomposition temperature is about 205 °C.Absorption and desorption PCIs were determined under static (300 °C) and dynamic (230–330 °C) conditions. An important hysteresis and two plateaus were observed and correlated with formation/decomposition of Mg2CoH5 (high-pressure plateau) and Mg6Co2H11 (low-pressure plateau) hydrides. For comparing hydrogen sorption kinetics, Mg2CoH5 (65 wt%) was also obtained by a sintering method at 410 °C and 6.0 MPa of hydrogen pressure. Absorption was very fast in the temperature range of 150–350 °C, independently of synthesis procedure. However, desorption curves showed a better behavior for RMA powders.MgCo was observed after decomposition of Mg2CoH5 under particular thermal treatments, while MgCo2 phase was not detected. The results of this study reinforce the idea that kinetics factors related with atomic mobility play a key role in the formation of Mg–Co intermetallics.  相似文献   

10.
Phase equilibria in the Co-rich Co–Al–W ternary system were determined with a unique diffusion-couple technique in which Co–27Al and Co–15W binary alloys (at. %) were first coupled for interdiffusion and then heat-treated for precipitation. After a diffusion process at 1300 °C for 20 h, concentration gradients of Al and W were formed in the γ-Co(A1) matrix in the vicinity of the coupled interface. After a heat treatment at 900 °C for 500 h the γ′-Co3(Al,W)(L12) phase was formed with a coarsened shape in contact with the γ, CoAl(B2) and Co3W(D019) phases. Additionally, it appeared with a submicron cuboidal shape within the γ matrix. After 2000 h, however, the coarsened γ′ phase became infrequent and the three phases of γ, CoAl and Co3W came into frequent contact with each other. These results clearly demonstrate that the γ′ phase is metastable and the three phases of γ, CoAl and Co3W are thermodynamically in equilibrium at 900 °C in the Co–Al–W ternary system.  相似文献   

11.
Multi-stage transformation (MST) in 500 °C annealed Ni-rich Ti49Ni41Cu10 shape memory alloy (SMA) is investigated by differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as solution-treated alloy undergoes B2 ↔ B19 ↔ B19′ two-stage transformations. Ti(Ni,Cu)2 precipitates are formed in 500 °C annealed specimens. Alloy annealed at 500 °C for 6–24 h exhibits MST. This MST is confirmed by DMA tests and is composed of B21 ↔ B191 ↔ B19′1 and B22 ↔ B192 ↔ B19′2 transformations corresponding to the regions near and far from Ti(Ni,Cu)2 precipitates, respectively. Experimental results show that the more the annealing time, the more the B21 ↔ B191 ↔ B19′1 transformations and finally only B21 ↔ B191 ↔ B19′1 transformations retain with the transformation temperatures close to those of Ti50Ni40Cu10 SMA.  相似文献   

12.
As-rolled and annealed Ni64Al34Re2 shape memory alloy (SMA) exhibits B2 → L10 (3R) martensitic transformation with Ms temperature up to about 210 °C. Experimental results indicate that the annealing temperature is the major factor that affects the Ms temperature. It is found that adding 2 at.% Re to replace Al in Ni64Al36 binary SMA can significantly refine the alloy's grain size and enhance the softening behavior during transformation. Meanwhile, Re has the same trend as Ni to affect the Ms temperature, but it has a less effect than Ni. The lattice constants and microstructures of NiAl-B2 phase, NiAl-L10 (3R) martensite and Ni3Al-L12 phase are almost similar to those of Ni–Al binary SMAs.  相似文献   

13.
In this paper, the dielectric properties of Ca1−xMgxLa4Ti5O17 ceramics at microwave frequency have been studied. The diffraction peaks of Ca(1−x)MgxLa4Ti5O17 ceramics nearly unchanged with x increasing from 0 to 0.03. Similar X-ray diffraction peaks of Ca0.99Mg0.01La4Ti5O17 ceramic were observed at different sintering temperatures. A maximum density of 5.3 g/cm3 can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. A maximum dielectric constant (r) and quality factor (Q × f) of Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h are 56.3 and 12,300 GHz (at 6.4 GHz), respectively. A near-zero temperature coefficient of resonant frequency (τf) of −9.6 ppm/°C can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. The measurement results for the aperture-coupled coplanar patch antenna at 2.5 GHz are presented. With this technique, a 3.33% bandwidth (return loss <−10 dB) with a center frequency at approximately 2.5 GHz has been successfully achieved.  相似文献   

14.
An original in situ ultrasonic echography technique was used to study the thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass between RT and 630 °C. Changes in Young's modulus with temperature were reported allowing to study the supercooled-liquid state and the crystallisation process. Investigations of viscoelastic properties gave information on the correlation factor (hierarchically correlated motion theory) and three distinct crystallisation stages were observed. Their kinetics were studied using Voigt's and Reuss' approximations for a two-phase material and comparisons with the Johnson–Mehl–Avrami–Kolmogorov theory allowed us to consider a mixed surface/internal nucleation for the first stage and a surface nucleation for the two last stages.  相似文献   

15.
Ni75Nb12B13 alloys were synthesized by mechanical alloying (MA) of individual Ni, Nb and B components. X-ray investigation showed the formation of Ni (Nb, B) solid solution and amorphous phase at the intermediate stage of milling. Metastable phases formed by MA turned into Ni (Nb), Ni21Nb2B6 and Ni3Nb stable phases during heating up to 720 °C. The exothermal effects on DSC curves were caused with these processes. The disintegration of Ni (Nb, B) solid solution and crystallization of an amorphous phase resulted in the stable phases formation during the milling prolongation as well as after thermal treatment.  相似文献   

16.
Recently, doped hexagonal BaTiO3 (6h-BaTiO3) ceramics have been reported as potential candidates used in microwave dielectric resonators. However, similar to other common microwave ceramics, doped 6h-BaTiO3 ceramics require a high sintering temperature, greater than 1300 °C. In this study, the effect of sintering aids, including Bi2O3, B2O3, BaSiO3, Li2CO3, CuO, V2O5, 5ZnO·2B2O3, and 5ZnO·2SiO2, on the densification, microstructural evolution, and microwave properties of the 6h-Ba(Ti0.85Mn0.15)O3 ceramics was examined. Results indicate that among the fluxes studied, Bi2O3, B2O3, and Li2CO3 could effectively reduce the sintering temperature of 6h-Ba(Ti0.85Mn0.15)O3 ceramics through liquid phase sintering, while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 6h-Ba(Ti0.85Mn0.15)O3 with the additions of 5 wt% Bi2O3 sintered at 900 °C (r: 54.7, Qfr: 1323, and τf:183.3 ppm/°C), 10 wt% B2O3 sintered at 1100 °C (r: 54.4, Qfr: 3448, and τf: 254.5 ppm/°C), and 5 wt% Li2CO3 sintered at 950 °C (r: 43.7, Qfr: 2501, and τf: −29.8 ppm/°C).  相似文献   

17.
A new proton conducting Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte membrane was prepared on NiO-based anode support by suspension spray followed by a co-sintering at 1400 °C for 4 h. Chemical stability test shows that this new proton conductor displays adequate chemical stability against CO2 at intermediate temperatures. The conductivity of Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ in humidified H2 is about 50% higher than that of BaCe0.6Zr0.2Gd0.16Zn0.04O3−δ from 500 to 800 °C. With La0.8Sr0.2MnO3−δ cathode, fuel cell with Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte shows 1.02 V of OCV and 354 mW/cm2 of maximum power density at 700 °C, respectively. And the cell performance did not degrade after running at least for 10 h.  相似文献   

18.
The response to thermal exposure of ball-milled Al/K2TiF6/KBF4 powder blends was investigated to explore the potential of PM processing for the manufacture of Al–Ti–B alloys. K2TiF6 starts to be reduced by aluminium as early as 220 °C when ball-milled Al/K2TiF6/KBF4 powder blends are heated. The reaction of KBF4 with aluminium follows soon after. The Ti and B thus produced are both solutionized in aluminium before precipitating out as Al3Ti and TiB2. All these reactions take place below the melting point of aluminium. The ball-milled Al/K2TiF6/KBF4 powder blends heat treated at approximately 525 °C can be compacted to produce Al–Ti–B pellets with in situ formed Al3Ti and TiB2 particles. These pellets are shown to be adequate grain refiners for aluminium alloys.  相似文献   

19.
Single crystal diffraction, Infrared spectroscopy and differential scanning calorimetry DSC techniques have been used to investigate the different phases of NH4HgBr3·H2O, Tribromo ammonium mercurate (II) monohydrate, from room temperature to 120 K. Two anomalies in thermal behaviour were detected for this compound at 198 and 340 K, by DSC experiment. X-ray diffraction measurements confirm the presence of the first anomaly. At room temperature NH4HgBr3·H2O, crystallizes in the orthorhombic space group Cmc21, with the lattice constants a = 4.475(1) Å, b = 17.226(2) Å, c = 10.240(2) Å and Z = 4. Below 200 K the structure is monoclinic P21 with: a = 4.379(4) Å, b = 17.220(10) Å, c = 10.103(2) Å, β = 90.023(9)° and Z = 2 (T = 120 K). The mercury atom is surrounded by four bromine atoms in an irregular tetrahedron. The tetrahedra are linked at two corners, resulting in infinite chains along the “a” axis. The ammonium groups are located between the chains ensuring the stability of the structure by hydrogen bonding contacts: NHBr, OHBr, NHO. The structural phase transformation was attributed to an orientational disorder of ammonium groups.  相似文献   

20.
The microstructure and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics system with ZnO additions (0.5 wt.%) investigated by the conventional solid-state route have been studied. Doping with ZnO (0.5 wt.%) can effectively promote the densification and the dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics. 0.6La(Mg1/2Ti1/2)O3–0.4Ca0.6La0.8/3TiO3 ceramics with 0.5 wt.% ZnO addition possess a dielectric constant (r) of 43.6, a Q × f value of 48,000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −1 ppm/°C sintering at 1475 °C. As the content of La(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 62,900 (GHz) for x = 0.8 is achieved at the sintering temperature 1475 °C. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号