首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The tensile deformation behaviour of two recently developed aluminium alloys in the temperature range 200–550°C is characterized in this paper. The aluminium alloys studied here are an automotive stamping grade Al–Mg–Mn alloy and an Al–Li–Cu alloy. Tensile properties at elevated temperatures were determined under different temperature-strain rate combinations. An analysis of deformation and fracture behaviour at elevated temperatures is also presented. The Al–Mg–Mn alloy and the Al–Li–Cu alloy exhibited extended ductility or mild superplasticity at elevated temperatures. Metallographic and fractographic studies revealed appreciable grain growth and cavitation at elevated temperatures. The fracture elongation of Al–Mg–Mn alloy decreased beyond 430°C. Pronounced apparent strain hardening was observed in the case of the Al–Li–Cu alloy in the temperature range 525–550°C at a very low strain rate. This could be due to dynamic grain growth and/or dislocation structure evolution.  相似文献   

2.
Abstract

As rolled TC21 titanium alloy was subjected to isothermal constant strain rate tensile tests using an electronic tensile testing machine. After tensile deformation, the alloys were subjected to double annealing. Superplastic behaviour and microstructure evolution were systematically investigated. Experimental results show that as rolled TC21 alloy exhibits good superplasticity at temperatures ranging from 870 to 930°C and strain rates ranging from 3×10?4 to 3×10?2 s?1. A maximum elongation of 373·3% was obtained at 910°C and 3×10?4 s?1. In addition, the alloy microstructure comprises α and β phases during plastic deformation. The primary α-grains aggregate and merge to form new crystal grains with irregular grain boundaries because of dynamic recrystallisation. Furthermore, the primary α phase content gradually decreases with increasing temperature. The resulting microstructure after deformation and double annealing is a duplex microstructure comprising a primary equiaxed α phase and a β-transformed lamellar structure. The acicular α phase transformed from the β phase is mutually interlaced as a basketweave structure after deformation at 930°C and double annealing.  相似文献   

3.
Abstract

Compression testing was used to explore the influence of strain rate on the formation of deformation induced ferrite. Samples of a 0·4%C–1·4%Mn plain C–Mn steel were heated to 1225°C, cooled to test temperatures in the range 1100–610°C, and then given a true strain of 0·6, at strain rates of3 × 10?2, 3 × 10?3, and 3 × 10?4 S?1. At the lowest strain rate it wasfound that the strain to peak stress decreased with decreasing temperature in the range 750–610°C. This behaviour is related to the formation of thin films of the softer deformation induced ferrite at the γ grain boundaries at the higher temperatures, and spheroidisation at the lower temperatures. More normal stress–strain curves were observed at the higher strain rates, as raising the strain rate prevents the formation of deformation induced ferrite and delays spheroidisation. The strain rate was also found to have an important influence on the extent of recovery in the deformation induced ferrite; the lowest strain rate enabling full recovery and or recrystallisation to occur, thus keeping the film soft. This behaviour is shown to account for the poor hot tensile ductility at the lowest strain rates. Raising the strain rate in this temperature range improves the ductility because work hardening takes place, raising the strength of the ferrite closer to that of the y, thus preventing strain concentration from occurring.

MST/1934  相似文献   

4.
Abstract

The effect of a change in the morphology of the pearlite colonies on the Charpy impact energy of a fully pearlitic steel containing 0·76%C, 1·20%Mn, and 0·085% V was examined over the range of testing temperatures from ?50 to 200°C. The change from a multicolony nodular pearlite structure produced from austenite of grain size 185 μm to a structure composed of individually formed colonies produced from austenite of grain size 25 μm caused a decrease in the transition temperature of 75 K and an almost 100% increase in the Charpy impact energy measured at room temperature. It is proposed that the impact toughness of pearlitic steel can be affected by pearlite morphology, at constant interlamellar spacing, only at temperatures above the ductile–brittle transition temperature of the ferrite, when local plastic deformation in the pearlitic ferrite at high angle boundaries can arrest propagating brittle cracks.

MST/730  相似文献   

5.
Abstract

AZ31 Mg alloy samples were processed by equal channel angular pressing (ECAP) at 220°C for four passes. An average grain size of ~1·9 μm with reasonable homogeneity was obtained. The ECAP process imparted large plastic shear strains and strong deformation textures to the material. Subsequent annealing of the equal channel angular pressed samples produced interesting mechanical behaviours. While yield strength increased and ductility decreased immediately after undergoing ECAP, annealing at temperatures <250°C restored ductility significantly at a small decrease in of yield strength. Annealing at temperatures >250°C reduced yield strength without additional improvement in ductility. It is believed that the combination of stress relief via dislocation elimination, refined microstructure and the retention of a strong ECAP texture at low annealing temperatures enhance ductility. High temperature annealing breaks down the ECAP texture resulting in no further improvement in ductility. The results show that the mechanical properties of the alloy can be positively influenced by annealing after ECAP to achieve a combination of strength and ductility.  相似文献   

6.
Abstract

This investigation has examined intergranular fracture during heat treatment and deformation of an Al–Li–Cu–Mg alloy and of an Al–Li–Cu alloy. When solution treatment of the Al–Li–Cu–Mg alloy was initiated by rapid heating to temperatures ≥ 545°C, non-equilibrium eutectic melting of a grain boundary precipitate phase occurred and the liquid spread along grain boundaries as a thin film. On quenching, intergranular cracks were observed at grain boundaries into which a liquid film had penetrated during solution treatment. For less rapid heating rates, non-equilibrium eutectic melting did not occur and no intergranular cracks were observed after quenching. No evidence of non-equilibrium eutectic melting was observed in the Al–Li–Cu alloy irrespective of the rate of heating to 550°C. During tensile testing of as quenched and quenched and aged specimens of the two alloys, intergranular fracture occurred in most specimens, whether or not non-equilibrium eutectic melting had taken place during solution treatment, indicating that at least one additional mechanism of intergranular fracture was initiated by deformation.

MST/947  相似文献   

7.
Abstract

The possibility of high strain rate superplasticity (HSRS) was examined over a wide range of temperatures in a powder metallurgy aluminium alloy 6061/SiCp composite with a relatively large SiC particle size of ~8 μm. A maximum tensile elongation of 350% was obtained at 600°C and 10-2 s-1. Tensile elongations over 200% were obtained in a narrow temperature range between 590 and 610°C at high strain rates of 10-2 and 10-1 s-1. The current testing temperature range could be divided into two regions depending on the rate-controlling deformation mechanism. Region I is in the lower temperature range from 430 to 490°C, where lattice diffusion controlled dislocation climb creep (n = 5) is the rate-controlling deformation process, and region II is in the higher temperature range from 520 to 610°C, where lattice diffusion controlled grain boundary sliding controls the plastic flow. An abnormally large increase in activation energy was noted at temperatures above 590°C, where large tensile elonga tions over 200% were obtained at high strain rates. This increase in activation energy and high tensile ductility may be explained in terms of presence of a liquid phase created by partial melting, but such evidence could not be provided by the current differential scanning calorimetry (DSC) test. This may be because the DSC is not sensitive enough to detect the small amount of liquid phase.  相似文献   

8.
《Materials Science & Technology》2013,29(11-12):1302-1308
Abstract

Superplastic forming of conventional titanium alloy sheet is limited commercially by the relatively long cycle times imposed by the high temperatures and slow strain rates required. In order to minimise cycle times material with a fine grain size is required to allow either, an increase in the forming rate or a reduction in the deformation temperature. This study details the manufacture of Ti–6Al–4V–0.5B powder with a nanocrystalline grain size, which was produced by mechanical milling. The material was consolidated by hot isostatic pressing at a range of temperatures during which ~2.5 vol.-%TiB was formed by an in situ reaction between the titanium and boron. The TiB particles limited the growth of the grain size in the titanium from the nanocrystalline structure in the powder to sizes in the range 600 nm–4 µm after consolidation. The consolidated material was hot tensile tested at a range of temperatures and strain rates. A superplastic elongation of 310%was achieved when testing at 900°C at a strain rate of 6×10-2 s-1 compared with 220% for conventional Ti–6Al–4V sheet. However, extensive cavitation, induced by the presence of argon, occurred during high temperature deformation and limited the superplastic extensions achieved.  相似文献   

9.
Abstract

In the present study, the room temperature mechanical properties of nanocrystalline Ni and Ni–75 wt-%Co alloy, prepared by pulse electrodeposition, were contrasted. Both higher strength and higher ductility were obtained for the Ni–75%Co alloy with a dual phase structure and an average grain size of 7·2 nm. By means of TEM observations of grain structures before and after tensile deformation for Ni and Ni–75%Co samples, a link between the ductility and the variation of stress induced grain growth during tensile deformation was established. Observations of TEM showed stress induced grain growth during tensile deformation, subjected to very high stresses and large strains, is very insignificant for the Ni–75%Co alloy in sharp contrast to the significant stress induced grain growth occurring in Ni. It was proposed that suppression of stress induced grain growth during tensile deformation can delay and even prohibit formation of shear banding plastic instability and thus enhances uniform strain leading to an enhanced ductility.  相似文献   

10.
Abstract

The effect of manganese on the microstructure developed by isothermal transformation of an Fe-Nb-C alloy was examined over a wide range of temperatures. A well defined discontinuity was found at about 750°C in the time-temperature-transformation curve of an Fe–0·033Nb–0·07C–1·07Mn (wt-%) alloy. The discontinuity appears close to the temperature at which the interphase precipitation of NbC begins to occur, this temperature being about 50 K lower than that for a corresponding Fe–Nb–C alloy. Carbide-free ferrite is principally formed between 850 and 780°C in the Mn-containing alloy, a wider temperature range than that for the alloy without manganese. The amount of NbC dispersed in ferrite is decreased by the addition of manganese. The changes that develop in the microstructure after the addition of manganese are explained in terms of the reduction of ferrite growth rate and the decrease in supersaturation of NbC in ferrite.

MST/45  相似文献   

11.
Abstract

This paper reports work on the enhanced tensile ductility in a nanostructured Al–7·5%Mg alloy with a mean grain size of 90 nm processed via consolidation of cryomilled Al–Mg powders. An annealing treatment at a temperature of 773 K for 2·5 h modified the extruded microstructure slightly without causing significant grain growth, as revealed by TEM and XRD patterns. The annealing treatment significantly improved the ductility, with a remarkably small loss in strength. The observed high thermal stability of the cryomilled Al alloy was attributed to the existence of impurity elements introduced during cryomilling and the presence of a supersaturated solid solution. The reported phenomenon of enhanced tensile ductility was attributed to a mechanism involving dislocation activity in submicron grains during plastic deformation.  相似文献   

12.
Abstract

The effect of temperature and strain rate on the 0·2% yield strength, ultimate tensile strength, and percentage elongation of M250 maraging steel was investigated under uniaxial tensile conditions in the temperature range from 25 (room temperature) to 550°C and strain rate range 10?4–10?1 S?l. Up to 400°C the steel shows essentially strain rate insensitive behaviour with a gradual decrease in the 0·2% yield strength and ultimate tensile strength. The elongation remains constant at all strain rates up to 300°C. Fractographic analysis indicates that the increasing strain rate induces strain constraint resulting in an increased dimple size. An elongated structure was observed at temperatures above 400°C. X-ray diffraction reveals the presence of reverted austenite in the specimens tested at 550°C.

MST/3263  相似文献   

13.
Abstract

Decreasing the forming time in gas blow forming using fine grained Mg alloy AZ31B thin sheet with a thickness of 0·6 mm was studied in this work. Tensile tests and gas blow forming using stepwise pressurisation profiles were performed to explore the deformation behaviour of a fine grained AZ31B Mg alloy sheet. The alloy sheets were successfully deformed into hemispherical domes using two proposed stepwise pressurisation profiles during gas blow forming. As a result, significant reduction in forming time was achieved. Maximum effective deformation rates of 1·02 × 10–2 and 1·98 × 10–2 s–1 were obtained at 300 and 370°C respectively. It was feasible to form a hemispherical dome with a height of 20 mm in less than 80 s at 370°C. The results confirmed that the thickness distribution along the centreline of the formed dome was sensitive to the pressurisation profiles. A higher thinning effect was observed at 370°C due to the higher deformation rate imposed during forming. Grain growth was not a serious problem for forming even at 370°C, and static grain growth should be the major factor resulting in grain growth during forming.  相似文献   

14.
Abstract

Two silicon-containing low-alloy steels, Fe–0·2C–2Si–3Mn and Fe–0·4C–2Si–4Ni (nominal wt-%), isothermally transformed in the bainitic temperature range (~400–250°C) have been deformed in tension. The bainitic microstructures in these steels contain appreciable amounts of retained austenite (instead of interlath cementite), and the behaviour of this phase during tensile deformation, and its apparent influence on the mechanical properties, has been examined. In particular, it is shown that provided the retained austenite exists in an interlath, thin-film morphology it has appreciable mechanical stability. Larger volumes of retained austenite have less mechanical and thermal stability, forming plate martensite structures and also undergoing deformation twinning. The effects of these variations on tensile strength and ductility are discussed.

MST/527  相似文献   

15.
Abstract

The tensile deformation behaviour of 316LN stainless steel was investigated from ambient temperature up to 1000°C. The hardness and microstructure of area near tensile fracture were characterised. The results show that the engineering stress increases smoothly with engineering strain when the tensile temperature is at 400°C or below, while the plastic deformation stage displays a serrated/jerky flow at 600°C. At tensile temperatures of 800°C or above, the plastic deformation stage is dramatically prolonged. The deformation mechanisms of 316LN stainless steel are proposed to be sliding and twinning at 400°C or below, tangle dislocations due to cross-slipping at 600°C, dynamic recovery at 700°C, and dynamic recrystallisation at 800°C or above. The finding provides useful guidelines for the processing and service of 316LN stainless steel components at high temperatures.  相似文献   

16.
Abstract

Ultimate tensile strength, 0·2% proof strength, elongation, and impact energy measurements are reported for an alloyed ductile iron of composition (wt-%) Fe–3·49C–2·33Si–0·42Mn–0·25Cu–0·23Mo–0·035Mg for austempering temperatures of 400, 375, and 350°C and a range of austempering times after austenitising at 920°C for 120 min. The ADI ASTM A897M:1990 standard is satisfied for an austempering temperature of 350°C but not at 375 or 400°C. This behaviour is discussed in terms of the influence of the unreacted austenite volume from the stage I austenitising reaction and the carbide product of the stage II austenitising reaction on the ductility. The present findings are predicted by the processing windows determined from the austempering kinetics.

MST/3393  相似文献   

17.
Abstract

The effects of aging treatments on the tensile properties and microstructure of Al–Cr–Zr–Mn powder metallurgy aluminium alloys prepared from high pressure gas atomised powders were investigated. The alloy compositions were designed to give powders with or without Al13Cr2 intermetallics in the <45 μm size fraction. The Al–5·2Cr–1·4Zr–1·3Mn alloy is typical of the former (concentrated alloy) and the Al–3·3Cr–0·7Zr–0·7Mn alloy of the latter (dilute alloy). The alloys were prepared using a canning/degassing/extrusion sequence or the Conform consolidation process. Measurements of micro hardness and electron microscopy were used to correlate the microstructure with the tensile properties. The extruded powders of both alloys exhibited better properties than those of the Conformed powders. A large contribution to the strength of the extruded materials is made by their stabilised fine grain size. The dilute alloys had consistently better ductility. Neither alloy retained its strength after prolonged aging at 400°C, but the results indicate that a service temperature of 300°C may be possible.

MST/1247b  相似文献   

18.
Abstract

Alumina continuous fibre reinforced Al–4·5 wt-%Cu alloy composite specimens were compressed in the axis direction at room temperature, 200°C, 300°C, and 400°C. The compressive stress–end shortening relationships at all test temperatures were similar to the elastic response, but with some non-linearity shortly before the macro failures. Composite compressive stress declined at elevated temperatures. The difference between the failure strength and the onset failure strength decreased with increase in temperature. The dominant failure mode at room temperature and 200°C was that of buckling, but it changed to kinking at elevated temperatures. Composite compressive behaviour at all test temperatures conformed to plastic buckling theory.  相似文献   

19.
Abstract

The superplasticity of an Fe3Al based intermetallic alloy with 3 at.-% chromium has been investigated in the strain rate range 10-5-10-2 s-1 at test temperatures between 700 and 900°C. The composition of the iron aluminide was Fe–28Al–3Cr (at.-%) with additions of titanium and carbon. After thermomechanical processing the material possessed a coarse grained microstructure with an average grain size of 55 ± 10 μm. Strain rate exponents of 0·33≤m≤0.42 were recorded at strain rates of approximately 10-5-10-3 s-1 in the temperature range 750-900°C. Superplastic elongations of 350% and more were achieved. From thermal activation analysis of superplastic flow, an activation energy of 185 ± 10 kJ mol-1 was derived. This value is comparable to activation energies of superplastic flow in Fe3Al(Ti) alloys. However, in unalloyed Fe3Al the activation energy is higher, ~ 263 kJ mol-1. Optical microscopy showed grain refinement to ~ 30 ± 5 μm in size in superplastically strained tensile specimens. Transmission electron microscopy gave evidence of the formation of subgrains of 0·3–0·5 μm in size. Superplasticity in this iron aluminide is mainly attributed to viscous dislocation glide, controlled by solute drag in the transformed B2 lattice at the deformation temperatures. During superplastic deformation, subgrain formation and grain refinement in the gauge length were revealed. From this it is concluded that dynamic recrystallisation makes an important contribution to the deformation mechanism of superplastic flow in this material.  相似文献   

20.
The tensile deformation and fracture behavior of electrodeposited nanocrystalline Ni–15% Fe alloy samples after annealing for 90 min at 250, 400 and 500 °C temperatures were investigated. The structure of the samples was studied using TEM and XRD techniques and the fracture surfaces were investigated employing SEM. The results of this study indicated that annealing at 250 °C modified grain size distribution slightly but resulted in a significant increase in the initial strain hardening rate. While the average grain size in the 400 °C sample was increased to 59 nm, its yield strength was comparable to the as-deposited alloy with a 9 nm grain size. The plastic tensile elongation of all annealed samples was lowered significantly to less than 1% from approximately 6% in the as-deposited state. These results are discussed in terms of the inhomogeneity of plastic deformation and the evolution of internal stresses in nanocrystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号