首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A series of experimental austenitic alloys has been produced in which the nickel content ranges from 14 to 43%, with constant levels of 20%Cr, 1%Mn and 0.5%Si. A combination of isothermal, discontinuous and cyclic oxidation testing has been used to elucidate the performance in dry air and in air with 10%, 45% or 62% water vapour at 700°C and 1000°C. Evaluation was by means of thermogravimetry, surface analysis with glow discharge optical emission spectroscopy and scanning electron microscopy.

Nickel is shown to have several roles: it accelerates the kinetics of chromia formation yet suppresses chromia spallation at 700°C. At 1000°C, it strongly decreases the breakaway oxidation and spalling associated with iron oxide formation. This effect is particularly marked in environments containing water vapour, where the material loss may be decreased 10-fold by an increase in the nickel content. Results correlate to thermodynamic and kinetic data which show nickel to increase the chromium activity and diffusivity in the alloy.  相似文献   

2.
The transition of solidified phases in Fe–Cr–Ni and Fe–Ni alloys was investigated from low to high growth rate ranges using a Bridgman type furnace, laser resolidification and casting into a substrate from superheated or undercooled melt. The ferrite–austenite regular eutectic growth, which is difficult to find in typical production conditions of stainless steels, was confirmed under low growth rate conditions. The transition velocity between eutectic and ferrite cell growth had a good agreement predicted by the phase selection criterion. Which of either ferrite or austenite is easier to form in the high growth range was discussed from the point of nucleation and growth. Metastable austenite formation in stable primary ferrite composition was mainly a result of growth competition between ferrite and austenite. For a binary Fe–Ni system, a planar metastable austenite in the steady state, simultaneous growth such as eutectic and banded growth between ferrite and austenite in an initial transient region are confirmed.  相似文献   

3.
Abstract

Model Fe–25 w/o (weight percent) Cr and Fe–25 Cr–Ni alloys containing 2.5, 5, 10 and 25w/o nickel were exposed to a CO–26H2–6H2O (vol. pct) mixture at 680°C under thermal cycling conditions. The supersaturated carbon activity was calculated to be 2.9 (referred to graphite) and M3C was predicted to form on Fe–25Cr and Fe–25 Cr–2.5 Ni, but not on higher nickel content alloys. Metal dusting occurred on all alloys, accompanied by internal carburisation. Transmission electron microscopy of the dusting deposit showed that much of the carbon consisted of hollow graphite nanotubes. Small, metal-rich particles were found at the carbon filament tips. These were identified as single crystal Fe3C in the case of Fe–25 Cr, and M3C, containing low levels of nickel, in the case of Fe–25 Cr–2.5 Ni and Fe–25 Cr–5 Ni. In contrast, the particles found at the filament tips on the higher nickel, two phase, alloys were both M3C and austenitic Fe–Ni. Strong orientation relationships were determined between the graphite and cementite particles, however, no consistent and clear crystallographic relationship was deduced between the graphite and austenite particles. It is concluded that carbon deposition from the gas is catalysed by both Fe3C and austenite. Subsequent carbon nanotube growth reflects the orientation relationship between Fe3C and the graphite.  相似文献   

4.
Densities and their temperature coefficients of liquid Cr–Fe, Fe–Ni, and Cr–Ni binary alloys have been measured containerless using the technique of electromagnetic levitation. Data have been obtained in a wide temperature range including the supercooled region. The density measurements indicate that these binary systems have a small and positive excess volume, whereas the excess free energies are negative. The temperature coefficients of these alloys can be estimated from those of the pure components. Hence, possible contributions from the temperature dependence of the excess volume can be ignored to calculate the temperature coefficient of density.  相似文献   

5.
The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new acceleration during slow isochronal (i.e. at constant rate) cooling is interpreted in terms of the combined effect of the strain energy introduced in the system during martensite formation, which thermodynamically and/or mechanically stabilises austenite, and autocatalytic nucleation of martensite.  相似文献   

6.
Abstract

Nanocrystalline Fe–Ni–Cr–Al alloy coatings with ~4 wt-%Al were produced using the unbalanced magnetron sputter deposition technique with a composite 310S stainless steel target embedded with aluminium plugs. The oxidation behaviour of the coatings was studied, during which complete external α-Al2O3 scales were formed. During isothermal oxidation tests at 950, 1000, and 1050°C, the oxidation kinetics followed an essentially parabolic rate law, and the oxidation constants were measured to be 2·06 × 10-3, 4·23 × 10-3, and 1·14 × 10-2 mg2 cm-4 h-1 respectively. During a cyclic oxidation test at 1000°C the α-Al2O3 scale showed good scale spallation resistance. The surface hardness of the coatings was measured with a Knoop indentor before and after oxidation. After oxidation, the coating surface hardness was still significantly higher than that of the uncoated specimen, demonstrating the potential this coating has in the improvement of high temperature erosion resistance.  相似文献   

7.
8.
Abstract

Metal dusting is a recurring problem within the petrochemical industry that has serious consequences for plant efficiency and reliability, as well as for operational safety. The underlying factors governing its occurrence are not fully understood and therefore studies under closely monitored conditions in atmospheres that simulate those encountered in service are essential.

For this preliminary study, candidate reformer and pyrolysis tube materials have been selected and exposed at 560°C for periods of up to 200 hours in a highly reducing atmosphere. The intention has been to focus on some of the main variables that are thought to possibly contribute to metal dusting and evaluate their contribution through a series of controlled experiments. In addition to alloy composition, the principal parameters that have been addressed are surface condition and system pressure.

In the series of experiments described in this paper, machined and ground as well as polished specimens have been exposed to an H2–24.4%CO–2.4%H2O gas mixture at pressures of nominally 1.5, 2 and 5 bar (absolute). As a consequence of the character of this gas (i.e. carbon activity, ac, >>1), extensive coke deposition occurs on the metallic specimens. Thus, a thermal cycle has been introduced into the test procedure, generally at 25 hour intervals, so that the samples can be inspected and coke removed.

Cross-sectional optical and scanning electron microscope examinations of the morphology of the coke deposit and the nature and extent of attack have provided a deeper understanding of the importance of alloy composition and the contributions made by surface treatment and system pressure.  相似文献   

9.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

10.
11.
The density and viscosity of ternary Cr–Fe–Ni liquid alloys have been investigated over a wide temperature range. The density was measured using electromagnetic levitation as a container-less technique, while viscosity was measured by means of a high-temperature oscillating cup viscometer. Although, the concentration dependence of density shows the influence of the second order (binary) interaction parameter in excess volume, the influence of a third order (ternary) interaction parameter in excess volume can be neglected. The temperature dependences of the viscosities are well described by the Arrhenius law. The viscosity increases monotonically as Fe or Cr concentration increases. For constant temperature, the viscosity as a function of iron molar faction can be described by a thermodynamic model using the enthalpy of mixing as input parameter.  相似文献   

12.
13.
The reduction of dichloroethane (DCE) and trichloroethylene (TCE) by bimetallic iron–nickel (Fe–Ni) nanoparticles has been studied in this study. The reduction mechanism involves hydrodechlorination at the iron–nickel interface. The Fe–Ni nanoparticles have been synthesised by the chemical reduction method and immobilised on to a polysulphone matrix. The as-synthesised nanoparticles and Fe–Ni immobilied polysulphone support have been characterised to establish the particle size of the nanoparticles, which are of the order of 36–41?nm, and the physical characteristics of the immobilised support. Batch experiments have been performed using gas chromatography-mass spectrometry to study the degradation of DCE and TCE. The studies have shown that the bimetallic system is quite effective in the dechlorination of DCE and TCE. Also, the stability of the nanoparticles in the matrix has been explored with respect to its suitability for use in the degradation of chlorinated hydrocarbons.  相似文献   

14.
Abstract

The influence of different amounts of sulphur impurity on the oxidation behaviour of a Ni–10Cr–9Al alloy in air at 1000°C has been investigated. It is indicated by the results that with increasing sulphur content, not only is there a decrease in the scale spalling resistance, but also there is a significant change in the initial growth rate and composition of the scale. Sulphur causes the formation of an inhomogeneous alumina scale by promoting the initial formation of chromia possibly originating from the oxidation of chromium sulphide. It is found that the addition of yttrium is beneficial in reducing both the spalling of the scales and the enhanced scale growth. The influence of the various impurities on the scale spalling characteristics can be correlated with the observed growth mechanisms in the initial stages of oxidation.

MST/929  相似文献   

15.
Various sizes, fractions and morphologies of interdendritic σ phase in the as cast N08028 alloy due to different solidification conditions are characterised. Dissolution behaviours of the secondary phase in both the as cast and the forged alloys are investigated during heat treatment at 1100, 1150 and 1200°C. A recently developed analytical model, subjected to necessary modification, is applied to describe the dissolution process of σ phase in the alloys with and without prior hot deformation. A recipe derived from transformed fraction is applied to evaluate the effective activation energy for dissolution. It has been found that, the prior hot deformation accelerates the dissolution process, which can be attributed to the decreased particle size and the reduced effective activation energy.  相似文献   

16.
Abstract

The oxidation behaviour of alumina-forming Fe–20Cr–5Al and similar alloys containing small concentrations of lanthanum or lanthanum plus molybdenum in air at 1,150°C has been studied, with emphasis on thin (0.05 mm) specimens, where the aluminium reservoir in the substrate is soon depleted to a very low value. Oxidation of these alloys involves establishment and growth of protective alumina scales. However, once the residual aluminium concentration in the alloy drops below a critical level, a layer of chromia is able to develop and grow at the alumina–alloy substrate interface. Eventually, breakaway oxidation occurs and iron-rich oxides form and engulf the specimen.

This paper presents some kinetics of oxidation of these alloys and discusses the growth and breakdown of the protective scales, drawing on the results of detailed examinations of the oxidized specimens using analytical scanning and transmission electron microscopy in cross section. It has been shown that lanthanum increases the time to the onset of breakaway oxidation, probably due to beneficial effects on the mechanical integrity of the scale. Molybdenum additions have been found to decrease significantly the rate at which breakaway oxides are able to penetrate and engulf the alloy substrate. Such additions stabilize the ferrite phase in the substrate at the alloy–scale interface, thereby maintaining a high rate of diffusion of chromium to the interface and facilitating establishment of a healing and partially protective chromium-rich oxide layer at the base of the breakaway oxide scale. In the absence of such additions, depletions of chromium in the substrate adjacent to the alloy/scale interface, arising from oxidation of chromium, enable the austenite phase to be stabilized. The relatively low rate of diffusion of chromium in this phase allows chromium-rich oxide to form as internal precipitates in the alloy rather than as a continuous, healing layer; hence, the breakaway oxide scale is able to penetrate and consume the substrate more rapidly than in the presence of molybdenum additions.  相似文献   

17.
In this work, (Fe,Cr)3Al matrix nanocomposite reinforced by 47 vol.% Al2O3 was synthesized by mechanochemical reaction of Cr, 3Al and Fe2O3 powders mixture. The structural evaluation of powder particles during milling was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results showed that at the early stage of milling, the thermite reaction between Fe2O3 and Al occurred and Fe and Al2O3 phases were formed. Then, the remaining Al and Cr were alloyed with Fe, leading to (Fe,Cr)3Al–Al2O3 nanocomposite structure. Further investigations indicated that the presence of diluents (excess Al and Cr) did not change the modality of thermite reaction and the formation of (Fe,Cr)3Al–Al2O3 nanocomposite proceeded with combustion process. The (Fe,Cr)3Al–Al2O3 nanocomposite powder exhibited the hardness value of 1140 Hv which is significantly higher than 935 Hv obtained for (Fe,Cr)3Al.  相似文献   

18.
19.
Abstract

A thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for the βγ equilibrium, and good agreement for three-phase βγσ and βγα equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.  相似文献   

20.
A thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for the βγ equilibrium, and good agreement for three-phase βγσ and βγα equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号