首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Aluminium foams were produced by applying powder metallurgy technology. The process began by making aluminium powder and mixing it with alloy powder (Al5Si4Cu4Mg) and foaming agent (TiH2). The mix was compacted to the form of a billet by cold pressing and then it was hot extruded to a dense foamable strip, which was cold rolled to give 40% thickness reduction. The resulting precursor composites of both the extruded strip and the extruded plus rolled strip were then freely foamed without a mould at a constant temperature of 700°C for different foaming times. The effects of aluminium powder content and cold rolling on the foaming characteristics of the foamable composite strip were studied. It is noted that aluminium powder fibre in the extruded composite strip acts as a barrier to pore initiation and evolution due to the higher melting point of pure aluminium fibre than that of the alloy matrix. Cold rolling promotes foaming of the composite strip due to the TiH2 cracking and debonding between TiH2 particles and metal matrix. The morphological and microstructural evolution of composite foams was also investigated. The foaming mechanism can be described by the following sequence: cracklike pore nucleation between elongated powder fibres; ellipsoidal, spherical, and polygonal pore growth; and the collapse of pores as a result of coalescence.  相似文献   

2.
A volume integral equation method is used to investigate the mechanics of damage evolution in a unidirectional SiC/Ti composite under transverse loading. It is shown that the most likely mechanism of the damage is the initiation of partial fiber debonding followed by transverse cracking (in brittle matrix composites, e.g., SiC/Ti3Al) or plastic yielding (in ductile matrix composites, e.g., SiC/Ti-15-3). The matrix damage has been observed to occur at extremely low transverse loads and a rational explanation of this phenomenon does not appear to have been given previously in the literature. Our results indicate that the initiation of matrix cracking or yielding can be explained if microcracks are present in the fiber-matrix interface zone. In absence of the microcracks the stresses in the matrix are too low to cause any damage.  相似文献   

3.
The tensile fractography of an AI-20Si-3Cu-1 Mg alloy consolidated from rapidly solidified powder by extrusion has been investigated using optical and electron microscopy, and related to the processing conditions as well as the tensile behaviour of the alloy at room and elevated temperatures. The alloy studied shows distinct fracture features owing to the presence of dispersed silicon crystal particles with a bimodal distribution in size and of prior powder particle boundaries in the extrudate. It has been found that at room temperature cracks initiate by cracking the primary silicon crystal particles. Crack propagation occurs along the interfaces between the eutectic silicon crystal particles and the matrix and also between the prior powder particles, where microvoids are formed by the interfacial decohesion. At 300 °C, the fracture of the alloy involves microvoid nucleation, growth and coalescence at the interfaces between the silicon crystal particles and the aluminium matrix and between the prior powder particles. It has also been observed that the fractographic features of the alloy correspond well to the processing conditions including extrusion temperatures and subsequent heat treatment. The importance of minimizing the coarsening of the silicon crystals in processing in order to use the full strength potential of the alloy investigated is emphasized.  相似文献   

4.
采用细观力学方法研究了正交铺设SiC/CAS复合材料在单轴拉伸载荷作用下界面脱粘对基体开裂的影响。采用断裂力学界面脱粘准则确定了0°铺层纤维/基体界面脱粘长度, 结合能量平衡法得到了主裂纹且纤维/基体界面发生脱粘(即模式3)和次裂纹且纤维/基体界面发生脱粘(即模式5)的临界开裂应力, 讨论了纤维/基体界面剪应力、 界面脱粘能对基体开裂应力的影响。结果表明, 模式3和模式5的基体开裂应力随纤维/基体界面剪应力、 界面脱粘能的增加而增加。将这一结果与Chiang考虑界面脱粘对单向纤维增强陶瓷基复合材料初始基体开裂影响的试验研究结果进行对比表明, 该变化趋势与单向SiC增强玻璃陶瓷基复合材料的试验研究结果一致。  相似文献   

5.
Abstract

Aluminium based metal matrix composite powder was prepared using a stone mill. Elemental powders of pure aluminium and SiC particle reinforcement were milled in a horizontal stone mill at a constant rotation. Two different mill gaps were employed to investigate the distribution of SiC particles embedded in the aluminium matrix. In each case, 1 ton h-1 of Alp/SiCp composite powder was produced. The shape of the aluminium particles changed from ligamental to spherical and the angular faceted SiC particles became more spherical in form. Morphological and microstructural observations revealed that the advantages of using a stone mill to produce composite powder were that it provided well distributed SiC particles and good bonding between matrix and reinforcement. The mixing mechanism of the stone mill can be described as follows: shear deformation of aluminium particles and embedding of the SiC into the aluminium flakes, rolling and cold welding of the Al/SiC composite flakes to form rolls, and fracture of the composite rolls into spherical particles. Hot extrusion improved the distribution of the SiC particles in the matrix.  相似文献   

6.
《Materials Letters》2005,59(24-25):3014-3017
Ni–SiC metal matrix composites with two kinds of SiC content were prepared by electroforming in a nickel sulphamate bath. Tensile strength and microstructure of the composites before and after heat treatment were investigated. The maximum of tensile strength was obtained after heat treatment at 300 °C × 24 h. The values were 641 N/mm2 and 701 N/mm2 respectively. The complete reaction between nickel and SiC particles can produce shrinkage pores in the interface. The volume of shrinkage pores was equal to 8% of the volume of SiC particles in the composites. The interfacial reaction products were composed of Ni3Si and a little amount of Ni31Si12 after heat treatment at 600 °C × 24 h. The fracture evolution went though microcracks initiation, growth and coalescence. Cracking of the matrix, debonding of Ni–SiC interfaces and cracking of particles were three types of cracking modes for Ni–SiC composites.  相似文献   

7.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   

8.
《Composites Science and Technology》2004,64(10-11):1539-1549
The effects of hydrostatic extrusion on particle cracking and on the subsequent tensile properties of some prototypical particle-reinforced metal–matrix composites are investigated. In most cases, tensile failure occurs through a plastic instability in accordance with the Considere criterion for necking. The corresponding failure strain is therefore dictated by the global flow and hardening characteristics of the composites, as influenced by the intrinsic flow properties of the matrix as well as the extent and rate of particle cracking. Such cracking leads to significant reductions in the hardening rate and thus causes a reduction in the failure strain relative to that of the neat matrix alloy. Extrusion prior to tensile testing has the effect of saturating the flow stress of the matrix and limiting the tensile ductility to low values, largely because of the very low hardening rate of the matrix. Particle cracking during extrusion causes a further reduction in ductility. The dominant role of the matrix hardening is demonstrated through re-tempering treatments of extruded billets prior to tensile testing. A micromechanical model of particle cracking is developed, taking into account the effects of both the hydrostatic and the deviatoric stress components in axisymmetric loadings. The model is used to rationalize the observed trends in damage accumulation with particle content, particle type, and loading configuration (tension vs. extrusion).  相似文献   

9.
Powder metallurgical fabrication of SiC and Al2O3 reinforced Al‐Cu alloys Based on metallographic studies the states of composite powder formation during high‐energy ball milling will be discussed. Spherical powder of aluminium alloy AA2017 was used as feedstock material for the matrix. SiC and Al2O3 powders of submicron and micron grain size (<2 μm) were chosen as reinforcement particles with contents of 5 and 15 vol.‐% respectively. The milling duration amounted to a maximum of 4 hours. The abrasion of the surface of the steel balls, the rotor and the vessel is indicated by the content of ferrous particles in the powder. High‐energy ball milling leads to satisfying particle dispersion for both types of reinforcement particles. Further improvements are intended. The microstructure of compact material obtained by hot isostatic pressing and extrusion was studied in detail by scanning and transmission electron microscopy. For both types of reinforcement the microstructure of composites is similar. The microporosity is low. The interface between reinforcement particles and matrix is free of brittle phases and microcracks. In the case of SiC reinforcement particles, a small interface interaction is detectable which implies a good embedding of reinforcement particles. High‐energy ball milling under air‐atmosphere leads to the formation of the spinel phase MgAl2O4 during the subsequent powder‐metallurgical processing. Because of the size, rate and dispersion of the spinel particles, an additional reinforcement effect is expected.  相似文献   

10.
The evolution of stress in the SiC particles during crack propagation under monotonic loading in a cast hybrid MMC was investigated by micro Raman spectroscopy. The experiment was carried out in situ in the Raman spectroscopy. Experimental results showed that cracks due to monotonic loading propagated by the debonding of the particle/matrix interface and particle fracture. Secondary cracks those formed in front of the main crack tip coalesced with the main crack in subsequent loading and final failure occurred. A high decrease in stress (several hundreds in MPa) was observed with the interfacial debonding at the interface and with the particle fracture on the particle. Moreover, the critical tensile stresses for particle–matrix interface debonding and particle fracture developed in hybrid MMC were also estimated during the crack propagation.  相似文献   

11.
Copper matrix composites containing different volume fractions of B4C particles (0–15%) were first fabricated by spark plasma sintering followed by hot rolling in atmospheric environments, then their microstructures, phase compositions, mechanical properties and sintering mechanism were investigated. It was found that B4C particles distributed relatively homogeneously in the copper matrix. Reaction products of CuC8 and B were observed and identified in the composite. Under increasing B4C particle content, the ultimate tensile, yield strength and elongation to fracture of the composites decreased. Failure mode of composites included: (1) the interfacial debonding and (2) the cleavage fracture of copper. Moreover, micro-discharge between the adjacent particles occurred, and its led to local high temperature at the interface.  相似文献   

12.
Abstract

For fabrication of aluminium borate whisker (Al18B4O33(w)) reinforced 6061 aluminium alloy composites, a sol–gel alumina binder instead of conventional silica binder was used for preparing the whisker preforms of the squeeze cast composites. The results show that a sound whisker preform and a uniform composite can be made by this method. Unlike the reactive silica binder, the sol–gel alumina binder is rather stable throughout the entire high temperature fabrication process. Under appropriate conditions, the sol–gel alumina binder can also serve as a thermal barrier for minimising interfacial reactions between aluminium borate whiskers and the matrix alloy. With a binder concentration of 0.6 mol L-1, the ultimate tensile strength of the composite is as high as 277.6 MPa at room temperature and moderate at elevated temperatures. The tensile fracture of the alumina bound composite shows a mixed mode of dimple fracture and interface debonding.  相似文献   

13.
14.
Rapidly solidified metal matrix composites have been produced on a laboratory scale either by (1) melt spinning a composite after introduction of the ceramic phase and extrusion of the flakes obtained, or (2) blending melt-spun powder (basic alloy) with the ceramic phase and subsequent extrusion. AlMg(Si) alloys were used as matrix material while SiC particles with diameters of 3 or 20 m were used as the ceramic phase. For the composites prepared by route 1 it was found that the basic alloy was reinforced by the addition of 3 m particles whereas for the 20m particles reinforcement was observed only for very ductile matrices. The bond between SiC particles and matrix was good. A diffusion and wetting bond was formed. For the composites prepared by route 2 it was found that reinforcement did not occur and that the bond between particles and matrix was weak. Debonding of the particles took place in the case of tensile fracture. The advantage of a rapidly solidified matrix for these composites is that relatively high ductilities are combined with good reinforcement effects. Prior contact of the ceramic phase and the aluminium melt is needed for a good bond between SiC and the matrix material. It is concluded that route 1 should be preferred for the production of rapidly solidified aluminium matrix composites.  相似文献   

15.
AZ91 alloy matrix composites are synthesized by in situ reactive formation of hard MgO and Al2O3 particles from the addition of magnesium nitrate to the molten alloy. The evolved oxygen from decomposition of magnesium nitrate reacts with molten magnesium to form magnesium oxide and with aluminium to form aluminium oxide. Additionally, these newly formed oxides react with each other to form MgAl2O4 spinel. Application of ultrasonic vibrations to the melt increased the uniformity of particle distribution, avoided agglomeration, and decreased porosity in the castings. Ultrasound induced physical phenomena such as cavitation and melt streaming promoted the in situ chemical reactions. Well dispersed, reactively formed hard oxides increased the hardness, ultimate strength, and strain-hardening exponent of the composites. Presence of well-dispersed hard oxide particles and stronger interface resulting from cavitation-enhanced wetting of reactively formed particles in the AZ91 alloy matrix improved the sliding wear resistance of the composites.  相似文献   

16.
The interface characterization of the aluminium alloy reinforced with Al2O3 particulates ((Al2O3)p/AI composite) was performed using X-ray diffractometry and energy dispersive X-ray spectroscopy. A layer of MgAl2O4 single crystals was observed at the (Al2O3)p/Al interface in the as-received extruded composites. Such MgAl2O4 crystals formed at the surface of (Al2O3)p are believed to grow by consuming a certain amount of (Al2O3)p. Upon loading, interfacial debonding was observed to occur at the boundary between MgAl2O4 and the aluminium alloy, or along the MgAl2O4 layer itself. These experimental observations are correlated with the tensile properties of such composites.  相似文献   

17.
Magnesium matrix composites reinforced with two volume fractions (1 and 3%) of SiC particles (1 μm) were successfully fabricated by ultrasonic vibration. Compared with as-cast AZ91 alloy, with the addition of the SiC particles grain size of matrix decreased, while most of the phase Mg17Al12 varied from coarse plates to lamellar precipitates in the SiCp/AZ91 composites. With increasing volume fraction of the SiC particles, grains of matrix in the SiCp/AZ91 composites were gradually refined. The SiC particles were located mainly at grain boundaries in both 1 vol% SiCp/AZ91 composite and 3 vol% SiCp/AZ91 composite. SiC particles inside the particle clusters may be still separated by magnesium. The study of the interface between the SiC particle and the alloy matrix suggested that SiC particles bonded well with the alloy matrix without interfacial reaction. The ultimate tensile strength, yield strength, and elongation to fracture of the SiCp/AZ91 composites were simultaneously improved compared with that of the as-cast AZ91 alloy.  相似文献   

18.
Abstract

Discontinuously reinforced metal matrix composites are susceptible to reinforcement particle cracking, which reduces tensile elongation. However, many of the particles experience multiple cracking episodes, which would seem unfavourable in a matrix filled with similar particles. Simulations of an aluminium matrix composite reinforced with 9 vol.-SiC particles have been performed using a non-linear axisymmetric finite element model. Reinforcement particles with and without defects were cracked in the simulation in order to study the subsequent behaviour of the composite. Particle defects were found to decrease the impact of reinforcement particle cracking on the stress in the surrounding matrix. Multiple cracking of reinforcement particles was shown to be feasible because of the load bearing ability of fractured particles.  相似文献   

19.
Abstract

The microstructure of a cast aluminium alloy A356 reinforced with 15 vol.-%SiC particles has been investigated using analytical microscopy. It is shown that the morphology of the silicon phase, as well as that of the Al–Si eutectic structure, which are the features of this alloy system, are dramatically changed by the presence of the SiC particles. Significant effects of grain refinement werefound to occur not only on the primary aluminium grains, but also on the primary and eutectic silicon phases. Twinning and dislocations were often observed within that silicon phase which was situated adjacent to the SiC particles. Microcracks were also observed at the SiC/silicon interface. The presence of such microcracks suggests that a stress concentration had developed at the silicon/SiC particle interfaces, probably as a result of the thermal expansion mismatch occurring between the silicon and SiC particles. The microcracks which consequently develop are formed as a result of the poor silicon–SiC particle bonding. Other intermetallics, notably Mg2Si and FeSiAl5, which exhibit cubic and tetragonal symmetries respectively, were also identified as being present in the microstructure.

MST/1460  相似文献   

20.
Axial fatigue tests have been performed at three different stress ratios, R, of ?1, 0 and 0.4 using smooth specimens of an aluminium alloy composite reinforced with SiC particulates of 20 μm particle size. The effect of stress ratio on fatigue strength was studied on the basis of crack initiation, small crack growth and fracture surface analysis. The stress ratio dependence of fatigue strength that has been commonly observed in other materials was obtained, in which fatigue strength decreased with increasing stress ratio when characterized in terms of stress amplitude. At R=?1, the fatigue strength of the SiCp/Al composite was the same as that of the unreinforced alloy, but at R= 0 and 0.4 decreased significantly, indicating a detrimental effect of tensile mean stress in the SiCp/Al composite. The modified Goodman relation gave a fairly good estimation of the fatigue strength at 107 cycles in the unreinforced alloy, but significantly unconservative estimation in the SiCp/Al composite. At R= 0 and 0.4, cracks initiated at the interfaces between SiC particles and the matrix or due to particle cracking and then grew predominantly along the interfaces, because debonding between SiC particles and the matrix occurred easily under tensile mean stress. Such behaviour was different from that at R=?1. Therefore, it was concluded that the decrease in fatigue strength at high stress ratios and the observed stress ratio dependence in the SiCp/Al composite were attributed to the different fracture mechanisms operated at high stress ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号