首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

TiAlYN/CrN and CrAlYN/CrN nanoscale multilayer coatings were deposited on γ-TiAl specimens using magnetron sputtering techniques. The nitride layers were manufactured by unbalanced magnetron sputtering (UBM) and high power impulse magnetron sputtering (HIPIMS). The CrAlYN/CrN coatings had an oxy-nitride overcoat. On some of the coated samples an additional alumina topcoat was deposited. The oxidation behaviour of the different coatings was investigated at 750 and 850°C performing quasi-isothermal oxidation tests in laboratory air. Mass change data were measured during exposure up to failure or the maximum exposure length of 2500 h. When exposed to air at 750°C, the Ti-based nitride films exhibited higher oxidation resistance than the Ti – 45Al –8Nb substrate material. The alumina topcoat enhanced the oxidation protection of this coating system, acting as diffusion barrier to oxygen penetration. At 850°C, the TiAlYN/CrN films exhibited poor stability and rapidly oxidised, and therefore were not applicable for long-term protective coatings on γ-TiAl alloys. The beneficial effect of the additional Al2O3 layer was less pronounced at this exposure temperature. The Cr-based nitride films exhibited high oxidation resistance during exposure at 850°C. HIPIMS deposition improved the oxidation behaviour of the CrAlYN/CrN nanoscale multilayer coatings in comparison to UBM coatings. For these coatings, the decomposed and partially oxidised nitride films were an effective barrier to oxygen inward diffusion. The alumina topcoat did not significantly increase the oxidation resistance of the γ-TiAl alloy coated with Cr-based nitride films.  相似文献   

2.
Abstract

Thermal barrier coatings (TBCs) of yttria partially stabilized zirconia were deposited on gamma TiAl samples using electron-beam physical vapour deposition. The specimens were coated with intermetallic Ti –Al – Cr layers and CrAlYN/CrN nanoscale multilayer coatings. The lifetime of the TBC systems was determined performing cyclic oxidation tests in air at temperatures between 850 and 950–C. The TBC systems with Ti –Al – Cr and CrAlYN/CrN layers did not fail at 850 and 900–C during the maximum exposure time period of 1000 cycles of 1 h dwell time at high temperature. No spallation of the thermal barrier coatings was observed. As revealed by post-oxidation microstructural analysis, the protective coatings were severely degraded when exposed at 900–C, resulting in growth of mixed oxides on the substrate. Underneath the thermal barrier coating an outer oxide scale with a columnar structure was observed, consisting of rutile and α-Al2O3. Energy-dispersive X-ray spectroscopy analysis revealed zirconia and chromia being dissolved in the outer oxide scale. The columnar structure and the presence of zirconia indicated an effect of the TBC on the morphology of the outer oxide scale. The zirconia top coat exhibited an excellent adherence to this oxide scale formed on the protective layers when degraded, and at defects like cracks. When thermally cycled at 950–C, the TBC system on specimens coated with Ti –Al – Cr failed by spallation of the thermally grown mixed oxides, whereas the thermal barrier coating was well adherent to the outer oxide scale at this temperature, too.  相似文献   

3.
Abstract

Intermetallic titanium aluminide alloys are attractive light-weight materials for high temperature applications in automotive and aero engines. The development of γ-TiAl alloys over the past decades has led to their successful commercial application as low pressure turbine blades. The operating temperatures of γ-TiAl based alloys are limited by deterioration in strength and creep resistance at elevated temperatures as well as poor oxidation behaviour above 800 °C. Since improvement in oxidation behaviour of γ-TiAl based alloys without impairing their mechanical properties represents a major challenge, intermetallic protective coatings have aroused increasing interest in the last years.

In this work, a 10 μm thick intermetallic Ti–46Al–36Cr–4Zr (in at.-%) coating was applied on a TNB alloy using magnetron sputtering. This layer provided excellent oxidation protection up to 1000 °C. Microstructural changes in this coating during the high temperature exposure were extensively investigated using scanning and transmission electron microscopy. The coating developed a three-phase microstructure consisting of the hexagonal Laves-phase Ti(Cr,Al)2, the tetragonal Cr2Al phase and the cubic τ-TiAl3 phase. After long-term exposure the three-phase microstructure changed to a two-phase microstructure of the hexagonal α2-Ti3Al phase and an orthorhombic body-centred phase, whose crystal structure has not yet been definitely identified. On the coating, a thin protective alumina scale formed. Applying this intermetallic layer as bond coat, thermal barrier coatings (TBCs) of yttria partially stabilized zirconia were deposited on γ-TiAl based TNB samples using electron-beam physical vapour deposition. The results of cyclic oxidation testing (1 h at elevated temperature, 10 min. cooling at ambient temperature) revealed a TBC lifetime of more than 1000 h of cyclic exposure to air at 1000 °C. The ceramic topcoat exhibited an excellent adhesion to the thermally grown alumina scale which contained fine ZrO2 precipitates.  相似文献   

4.
Abstract

The effect of 1 at.% Si addition to the refractory high-entropy alloy (HEA) Ta–Mo–Cr–Ti–Al on the high temperature oxidation resistance in air between 900 °C and 1100 °C was studied. Due to the formation of protective chromia-rich and alumina scales, the thermogravimetric curves for Ta–Mo–Cr–Ti–Al and Ta–Mo–Cr–Ti–Al–1Si showed small mass changes and low oxidation rates which are on the level of chromia-forming alloys. The oxide scales formed on both alloys at all temperatures are complex and consist of outermost TiO2, intermediate Al2O3, and (Cr, Ta, Ti)-rich oxide at the interface oxide/substrate. The Si addition had a slightly detrimental effect on the oxidation resistance at all temperatures primarily as a result of increased internal corrosion attack observed in the Si-containing HEA. Large Laves phase particles distinctly found in the Si-containing alloy were identified to be responsible for the more rapid internal corrosion.  相似文献   

5.
Engine designers show continued interest in γ‐TiAl based titanium aluminides as light–weight structural materials to be used at moderately elevated temperatures. Although alloy development has made significant progress in terms of mechanical properties and environmental resistance, protective coatings have been developed that help to extend the lifetime of these alloys significantly. The major challenge of coating development is to prevent the formation of fast growing titania. Furthermore, changes of coating chemistries at high temperatures have to be considered in order to avoid rapid degradation of the coatings due to interdiffusion between substrate and coating. The paper describes recent work of the authors on different coatings produced by means of magnetron sputter technique. Thin ceramic Ti‐Al‐Cr‐Y‐N layers tested at 900 °C exhibited poor oxidation resistance. In contrast, intermetallic Ti‐Al‐Cr, Si‐based and aluminum rich Ti‐Al coatings were tested at exposure temperatures up to 950 °C for 1000h resulting in reasonable and partially excellent oxidation behaviour.  相似文献   

6.
Abstract

The thermal stability of three stainless steel conversion coatings for high temperature applications (e.g. photothermal conversion catalysis) are investigated. The thermal oxidation in air up to 1000°C of Fe–17Cr, Fe–18Cr–1·3Al, and Fe–22Cr–5Al coatings (all wt-%) are compared. This study has revealed a critical temperature below which the coating thickness is preserved; the critical temperature increases and the thermal oxidation of the conversion coating decreases with higher chromium and aluminium content. This is attributed to the difference in the substitution ratio of γ lacunar phase (additionally oxidised substituted magnetite), which is the main component of the conversion coatings. The thermal stability of this phase is higher when it is richer in chromium or aluminium. Higher contents of these elements raise the temperature of formation of chromite (FeCr2O4) and alumina, the occurrence of which causes thickening of the coating during thermal treatment.

MST/1891  相似文献   

7.
Abstract

γ-TiAl based intermetallics possess poor oxidation properties at temperatures above approximately 700°C. Previous studies showed that protective alumina scale formation on γ-TiAl can be obtained by small additions (around 2 at.%) of Ag. Recently, this type of materials has therefore been proposed as oxidation resistant coatings for high strength TiAl alloys. In the present study, a number of cast Ti–Al–Ag alloys and magnetron sputtered Ti–Al–Ag coatings were investigated in relation to transient oxide formation in air at 800°C. After various oxidation times the oxide composition, microstructure and morphology were studied by combining a number of analysis techniques, such as SEM, ESCA, AFM and LIOS-RS. The γ-TiAl–Ag alloys and coatings appear to form an α-Al2O3 oxide scale from the beginning of the oxidation process, in spite of the relatively low oxidation temperature of 800°C. The formation of metastable alumina oxides seems to be related to the presence of Ag-rich precipitates in the alloy matrix.  相似文献   

8.
Ti–Al–Mo–N coatings have been grown by arc PVD at different bias voltages, Vb, applied to the substrate and partial pressures of nitrogen reaction gas, p(N2), in the working chamber. The coatings have a nanocrystalline structure, with an average grain size on the order of 30–40 nm and a layered architecture made up of alternating layers based on a (Ti,Al)N nitride and Mo-containing phases of thickness comparable to the grain size. It has been shown that the phase composition of the coatings depends on Vb and p(N2): raising the energy of deposited ions by increasing Vb from–120 to–140 V, as well as raising p(N2) from 0.3 to 0.5 Pa, leads to a more complete molybdenum nitride formation during coating growth, which causes a transition from (Ti,Al)N–Mo–Mo2N compositions to (Ti,Al)N–Mo2N. Measurements of the binding energy of Mo 3d photoelectrons in metallic Mo and the Mo2N nitride by X-ray photoelectron spectroscopy have shown that the transition from the former phase to the latter is accompanied by a negligible energy shift.  相似文献   

9.
In this paper the results of a study aimed at coating large areas with FeCrAlY and CoCrAlY alloys by laser surface fusion are described. Metallurgical characteristics and oxidation behavior of the coatings are discussed.The results indicate that fusion of the coating materials was complete and a metallurgical bond was formed between the coatings and the type 304 stainless steel (SS) substrate as a result of laser processing. Some dilution of the coating alloys, in particular the aluminum content, was noticed due to melting of a portion of the substrate. Some small cracks, observed in the CoCrAlY coating, were formed as a result of shrinkage during solidification.Oxidation studies were performed at 1000–1185 °C in air for various times. The coatings, although diluted, showed excellent oxidation resistance and protection, while the type 304 SS substrate deteriorated rapidly. The effect of the thermal and oxidation treatment on the microstructural and chemical stabilities of the coatings are discussed.  相似文献   

10.
Intermetallic Oxidation-Resistant Coatings for Titanium Alloys Intermetallic Ti-Al coatings were deposited onto near-a titanium alloy TIMETAL 1100 using magnetron sputtering. Two coating systems were investigated: gradient layers with increasing A1 con- tent towards the surface of the coatings and a multilayer system consisting of three single layers ofTi3Al, TiAl and TiAl3. The over- all coating thickness was 4 μm and 16 μm for both systems. Isother- mal oxidation tests at 750 °C revealed good oxidation resistance and effective oxygen prevention from the substrate by the coatings. Room temperature tensile tests after long-term exposure to air 600°C proved the beneficial influence of the coatings on the ductility of the base material. The coatings are highly ductile under creep conditions thus keeping oxygen away from the substrate alloy even at high straining. In some cases creep lifetime was consider- ably prolonged. No detrimental influence of the Ti-A1 coatings on the fatigue properties of TIMETAL I100 was found for the 4pm multilayer coatings, whereas fatigue limit under repeated strain was slightly decreased for the 16μm coatings.  相似文献   

11.
High‐temperature application of titanium alloys in aeroengines is often limited by their insufficient resistance to the aggressive environment. Magnetron‐sputtered Ti–Al based coatings were developed in order to increase the maximum service temperature of conventional titanium alloys from the present 520–600 °C, the temperature limit set by the mechanical capabilities of most advanced alloys. The coatings not only demonstrated excellent oxidation resistance but also demonstrated beneficial effects on mechanical properties. Most importantly, the fatigue behavior of the substrate alloys was not degraded, a major hurdle for coating application on titanium alloys so far. Initial results on Cr‐containing Ti–Al based coatings indicated significant potential for application on titanium aluminides.  相似文献   

12.
Abstract

MCrAlY overlay coatings have been successfully used as a means of improving the oxidation performance of gas turbine blades operating at elevated temperatures. However, depletion of aluminium can limit the ability of such coatings to form a protective oxide layer should spallation of the original α-Al2O3 oxide layer occur under thermal cycling conditions. It is the objective of the current research to evaluate the potential of NiAl3 as a reservoir phase for a NiCrAlY overlay coating on a IN738LC superalloy substrate at 1,100°C in air. The morphologies and microstructures of the conventional NiCrAlY and NiAl3-modified NiCrAlY overlay coatings in the as-sprayed and oxidised conditions were characterised using SEM, EDX and XRD techniques.  相似文献   

13.
β-NiAl coatings with different Ni/Al ratios were deposited on K403 superalloy substrates via magnetron sputtering. The phase transformation and diffusion phenomenon of the NiAl/Ni-based superalloy system after vacuum annealing at 900 and 1000 °C were analyzed using X-Ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectrometry (EDS). The effect of coating concentrations on the outward diffusion behavior of substrate elements was discussed. The high Cr concentrations in the Al-rich NiAl coatings were caused by the intense interdiffusion between Al and Cr. The Ti, W and Mo partitioned to γ′-Ni3Al in the coatings. Several possible reasons for the formation of γ′-Ni3Al at the surface of Ni-rich NiAl coating were identified, including: diffusion behavior of W and Mo in β-NiAl, destabilizing effect of substrate elements on β-NiAl, and diffusion rates of Ni and Al in β-NiAl. The volume change in β ⇛ γ′ transformation process shows Ni uphill diffused to the γ′-Ni3Al islands at the surface of Ni-rich NiAl coatings. The IDZ (interdiffusion zone) thickness and precipitates in IDZ were related to the Al initial concentrations in the coatings.  相似文献   

14.
To investigate the effect of laser process parameters on microstructure and properties of composite coating, the composite coatings were manufactured by laser cladding Ni–Cr–Ti–B4C mixed powder on Q235 mild steel with different process parameters. The coatings are bonded with the substrate by remarkable metallurgical binding without cracks and pores. The composite coatings are consisted of in situ synthesized solid solution Ni–Cr–Fe, intermetallic compound (IMC) Ni3Ti, Cr2Ti, and ceramic reinforcements TiB2, TiC. Results of scanning electron microscopy (SEM) revealed that the ceramic reinforcements became coarser with higher specific energy (Es). There were independent ceramics TiB2, TiC, eutectic ceramic TiB2–TiC in coatings, and eutectic alloy–ceramic was detected. Compared with the substrate, the microhardness of coatings was increased significantly, and the maximum microhardness of coatings was approximately five times as high as the substrate. The wear resistance of coatings was improved dramatically than the substrate. Compared to the coatings with lower Es, higher Es led to lower microhardness and worse wear resistance ascribing to more Fe diffused into the coating from the substrate.  相似文献   

15.
Using an arc physical vapor deposition process, we have produced nanostructured Mo–Si–Al–Ti–Ni–N coatings with a multilayer architecture formed by Mo2N, AlN–Si3N4, and TiN–Ni and a crystallite size on the order of 6–10 nm. We have studied the physicomechanical properties of the coatings and their functional characteristics: wear resistance, adhesion to their substrates, and heat resistance. According to high-temperature (550°C) wear testing and air oxidation (600°C) results, the coatings studied here are wearand heat-resistant under appropriate temperature conditions. Their properties are compared to those of Mo–Si–Al–N coatings.  相似文献   

16.
Rare earths (RE) have been used to increase high temperature oxidation resistance of chromia and alumina forming alloys. The RE can be added as elements (or oxides) to the alloys or applied as oxide coatings to the alloy surface. This paper presents the effect of different RE oxide coatings and lanthanum chromite coatings on the high temperature oxidation behavior of Fe20Cr and Fe20Cr4Al alloys. The oxidation resistance of the Fe20Cr alloy increased with increase in ionic radius of the RE element in the coating. The RE oxides decreased chromia growth rate more than alumina growth rate. In extended cyclic oxidation tests that were carried out from peak temperatures of 900 °C, 1,000 °C and 1,100 °C to room temperature at cooling rates of 300 °C/s and 1,000 °C/s, the La2O3 coating increased cyclic oxidation resistance of the Fe20Cr alloy significantly more than the Pr2O3 coating. The role of RE in increasing overall oxidation resistance of chromia forming alloys is discussed.  相似文献   

17.
Abstract

Thermochemical analyses were carried out for a series of pack powder mixtures formulated for codepositing Al with Cr to form diffusion coatings on γ-TiAl resistant to high temperature oxidation by the pack cementation process. Based on the results obtained, experimental studies were undertaken to identify optimum pack powder mixtures for codepositing Al with Cr to form diffusion coatings with an adherent and coherent coating structure. The results of the thermochemical calculations performed indicated that codeposition of Al and Cr is possible with CrCl3.6H2O and AlCl3 activated pack powders containing elemental Al and Cr as depositing sources. However, experimental results obtained at 1100°C revealed that CrCl3.6H2O is not suitable for use as an activator for codepositing Al with Cr on γ-TiAl. It caused a significant degree of degradation indicated by weight losses instead of coating deposition to the substrate. However, adherent coatings with excellent structural integrity consisting of an outer Cr doped TiAl3 layer containing Al67Cr8Ti25 phase and an inner layer containing TiAl3 and TiAl2 phases were successfully codeposited at 1100°C using pack powder mixtures activated by AlCl3. It is suggested that such coatings were formed via a sequential deposition mechanism through inward diffusion of aluminium and chromium. Conditions that affect the pack codeposition process, and hence need to be carefully controlled, are discussed in relation to the mechanism of the formation of diffusion coatings with an integral structure free from microcracking on γ-TiAl.  相似文献   

18.
In this study, the high-temperature oxidation behaviour of arc-sprayed Ni–Cr coatings with high Cr contents of 30, 45 and 50 at.% was investigated in comparison with reference AISI 1020 steel. X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy were utilised to characterise the oxide scales. The oxidation resistance of the steel substrates was found to be enhanced after the application of the Ni–Cr coatings since the oxidation kinetics followed the parabolic law. In addition, the oxidation rate of Ni–50Cr coating was 56.5% lower than that of Ni–30Cr coating, indicating that the oxidation performance of coatings was improved with increasing Cr content. The oxide layers of Ni–Cr coating were found to be a double layer structure protecting the substrate from severely oxidation, which composed of a top layer of NiO and a basal layer of Cr2O3 and NiCr2O4. The surface of Ni–30Cr coating contained lots of multi-angle NiO crystals, while the surface of Ni–50Cr coating contained a dense Cr2O3 structure, suggesting that the growth of NiO crystals was limited due to the large amount of Cr-rich oxides.  相似文献   

19.
Aluminide coatings prepared on Ti-6Al-4V substrate were able to improve oxidation resistance of the alloy under cyclic oxidation at 750°C both in dry and moist air conditions due to aluminide’s ability to form a stable alumina oxide scale. However, degradation of the coating due to spallation, cracking, internal oxidation and formation of voids with increased cyclic oxidation reduced the lifespan of the coating and the underneath substrate. The main cause of coating degradation for hot-dip specimens is cracks that initiated and propagated perpendicular to the surface. For the plasma spray specimens, the cracks are parallel to the surface. Initiation of cracks in hot-dip coatings are more accredited to residual stresses due to cooling and presence of brittle intermetallic phases TiAl2 and TiAl. For plasma spray coatings, initiation and propagation of cracks are attributed to presence of entrapped oxides, pores and grain boundaries of the deposited splats whose flattened edges are parallel to the surface of the coating. Presence of water vapor, too, acts as an oxygen carrier and thus promotes oxidation internally, inhibits growth of continuous protective alumina oxide scales and weakens the scale/alloy interfacial toughness. Water vapor therefore accelerates degradation by increasing spallation and cracking rate of the coating.  相似文献   

20.
In this study, a β-Ta2O5 coating was deposited onto a Ti–6Al–4V substrate using a double-cathode glow discharge plasma technique. The hardness and elastic modulus values of the β-Ta2O5 coating were almost 4 times and 1.8 times greater than that of the Ti–6Al–4V substrate, respectively. Potentiodynamic polarisation curves indicated that the current densities of the β-Ta2O5 coated sample are least one order of magnitude less than that observed for the uncoated substrate under a solid/liquid slurry flow. Electrochemical impedance spectroscopy results showed that the resistance values for the β-Ta2O5 coating are of the order of 106?Ω?cm2, and at the same erosion time, the resistance value for the β-Ta2O5 coating is one order of magnitude greater than that of the Ti–6Al–4V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号