首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract

The combined effects of post-weld heat treatment (PWHT) and aging on the interfacial microstructure and tensile properties of alloy 800/2·25Cr–1Mo steel transverse weld specimens, welded using Inconel 182, were studied to determine the optimum PWHT temperature for the joint. In the present study, the joints were subjected to PWHT for 1 h at 948, 973, 998, and 1023 K, followed by aging at 873 K for 100–5000 h. The aging treatment at 873 K is intended to provide an accelerated simulation of service exposure at 773 K. The results of the present work show that the optimum PWHT temperature for the joint investigated is 973 K.

MST/1474  相似文献   

2.
为研究固溶处理对304奥氏体不锈钢和Q245R碳钢异种金属焊接接头显微组织及性能的影响,采用E309-16奥氏体不锈钢焊丝对6 mm厚的304/Q245R板材进行手工电弧焊,焊后使用箱式电阻炉对焊接接头进行固溶处理,对焊接接头进行显微组织观察和力学性能测试.结果表明:相对于固溶处理前,固溶处理后的接头焊缝组织为灰色奥氏体和黑色铁素体,枝晶偏析程度明显降低,Cr、Ni等合金元素分布较为均匀;焊缝和碳钢侧热影响区硬度值均有所提高,最高硬度值为304.59 HV,出现在焊缝位置;接头抗拉强度较高,达570 MPa,拉伸断裂发生在母材Q245R碳钢部位.另外,对焊缝进行XRD测定,未检测到不利于接头性能的相,这表明固溶处理后的异种金属接头性能良好,能够满足工程中的实际需求.  相似文献   

3.
In this study, microstructure and mechanical properties of a friction stir welded 18Cr–2Mo ferritic stainless steel thick plate were investigated. The 5.4 mm thick plates with excellent properties were welded at a constant rotational speed and a changeable welding speed using a composite tool featuring a chosen volume fraction of cubic boron nitride (cBN) in a W–Re matrix. The high-quality welds were successfully produced with optimised welding parameters, and studied by means of optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and standard hardness and impact toughness testing. The results show that microstructure and mechanical properties of the joints are affected greatly, which is mainly related to the remarkably fine-grained microstructure of equiaxed ferrite that is observed in the friction stir welded joint. Meanwhile, the ratios of low-angle grain boundary in the stir zone regions significantly increase, and the texture turns strong. Compared with the base material, mechanical properties of the joint are maintained in a comparatively high level.  相似文献   

4.
Abstract

In the use of ferritic to austenitic stainless steel transition joints for power plant applications, the difference in coefficients of thermal expansion constitutes a serious problem. One way to mitigate this is to use a trimetallic configuration by interposing a material with a coefficient of thermal expansion intermediate between the ferritic and austenitic steels. Modified 9Cr - 1Mo steel has been joined to 316LN austenitic stainless steel using Alloy 800 as an intermediate piece. In the work herein reported, welds between Alloy 800 and 316LN have been produced using Inconel 182 filler material. These have been subjected to high temperature exposure for up to 5000 h at 625 ° C. Results have shown that up to 500 h of aging the structure and mechanical properties remain unaffected. On treatment for 2000 and 5000 h, however, there is a noticeable increase in hardness and reduction in toughness. These have been found to be caused by precipitation of Ni3Ti and carbide phases including NbC and M23C6.  相似文献   

5.
The instrumented indentation test is a promising nondestructive technique for evaluating mechanical properties of metallic materials. In this study, the localised mechanical properties of welded joint of 304 austenitic stainless steel were characterised with the instrumented indentation test. The single V-groove welded joint was produced using the electric arc welding. A series of instrumented indentation tests were carried out at different regions, including base material, weld zone and heat-affected zone (HAZ). A soft zone regarding strength properties was found in the coarse-grain HAZ. The results show that the HAZ has the lowest yield strength and tensile strength (263.6 MPa, 652.5 MPa) compared with the base material (307.4 MPa, 807.9 MPa) and the weld zone (285.6 MPa, 702.1 MPa). In addition, characterisations of microstructure, microhardness and conventional tensile tests have been performed for comparison. The results reveal that the localised mechanical properties of welded joint of austenitic stainless steel can be represented effectively with the instrumented indentation technique.  相似文献   

6.
Abstract

The metallurgical and mechanical properties of friction welds between titanium and AISI 304L stainless steel were examined. Joint tensile strength increased when high friction pressure (>196 MN m?2) and high upsetting pressure (294 MN m?2) were used during welding. Although the surface roughness of the titanium substrate had no effect on joint strength, decreasing the surface roughness of the AISI 304L material did increase the tensile strength of completed joints. As welded dissimilar joints had poor bend test ductility and failed in the interface region. Detailed microscopy and X-ray diffraction analysis confirmed that the poor bend ductility was caused by a combination of high hardness of the titanium material immediately adjacent to the joint interface, the presence of unrelieved residual strain at the joint interface, and intermetallic phases formed during the welding operation. Detailed transmission electron microscopy and X-ray analysis confirmed that a thin layer rich in intermetallics was present in the as welded joints. (FeNiCr)Ti phases were formed during seizure formation and disruption; this provided the necessary conditions for anomalously high rates of diffusion of titanium in stainless steel, and of iron, chromium, and nickel in titanium. Low temperature post-weld heat treatment (PWHT), involving heating to 500–600°C followed by immediate air cooling, reduced intermetallic precipitation, promoted stress relaxation, and facilitated complete bonding across the whole joint interface. This treatment markedly improved bend ductility and had a negligible effect on joint tensile strength. High PWHT temperatures (≥900°C) and long holding times at temperature markedly reduced joint tensile strength and bend ductility, owing to excessive formation of intermetallic phases at the joint interface.

MST/1521  相似文献   

7.
本文从焊接材料的选择、焊接的准备及焊接施焊过程等方面介绍了022Cr22Ni5Mo3N双相不锈铜的焊接情况,通过对焊接接头的焊后检验分析,证明此焊接工艺方案确实可行,对实际生产中022Cr22Ni5Mo3N双相不锈钢的焊接具有一定的指导意义。  相似文献   

8.
304不锈钢氩弧焊焊剂的研究   总被引:18,自引:2,他引:18  
研制了一种用于奥氏体不锈钢焊接的氩弧焊焊剂 ,并对该焊剂进行了不锈钢对接板的焊接工艺试验。试验结果表明 ,采用氩弧焊焊剂可以大幅增加熔深 ,能够一次焊透 8mm厚 30 4不锈钢对接板 ,所获得的焊接接头具有良好的力学性能及耐晶间腐蚀性能  相似文献   

9.
埋弧焊和氩弧焊的焊缝合金元素及其含量、热输入、晶粒长大、预热温度、冷却速度和峰值温度对焊缝组织与力学性能均有一定的影响。总结了国内外对焊缝组织和力学性能的各种影响因素的相关研究,研究结果表明合金元素(如Mn、Cr、Ni、Mo等)能明显提高焊缝力学性能,每种元素都有合适的添加范围;焊缝接头强度和韧性以及伸长率随热输入的增大而减小;冷却速度的范围是8~12s。通过控制添加合金元素可以有效提高焊缝力学性能并改善焊缝组织,控制合理的热输入范围和冷却速度可提高焊缝的韧性。  相似文献   

10.
分析了 0Cr13Ni5Mo/Q345C马氏体不锈钢复合板的焊接性。通过抗裂性试验、复合板补焊及复合板对接焊、焊接工艺评定 ,提出了该复合板配套的焊接材料及可行的焊接工艺 ,按此工艺焊接的 0Cr13Ni5Mo/Q345C复合钢板接头的力学性能满足技术指标的要求。  相似文献   

11.
目的 选用430铁素体不锈钢作为研究对象,对比研究添加SiO2、TiO2、Cr2O3和未添加活性剂对A-TIG焊接接头显微组织和力学性能的影响。方法 采用3种活性剂涂覆在430铁素体不锈钢上进行A-TIG试验,分析活性剂对接头熔深、组织、性能、元素含量的影响情况。结果 同一焊接工艺参数下,活性剂的加入均能提高焊缝的熔深和深宽比,减少熔宽;其中,SiO2为活性剂时获得了最佳的焊缝几何形貌。同时,对比常规TIG焊接(未添加活性剂)接头的显微组织及力学性能可知,活性剂的加入并未改变焊接接头的显微组织且无新相的生成;活性剂的添加能够细化接头组织,从而使得接头硬度有所提高。结论 活性剂的加入能够显著增加铁素体不锈钢TIG焊缝熔深,改善接头组织,提高接头硬度。  相似文献   

12.
High entropy alloys(HEAs)have superior mechanical properties that have enabled them to be used as structural materials in nuclear and aerospace applications.As a dissimilar joint design is required for these applications,we created a dissimilar joint between CoCrFeMnNi-HEA and duplex stainless steel(DSS)through laser beam welding;a technique capable of producing a sound joint between the two materials.Microstructure examination using SEM/EBSD/XRD analysis revealed that the weld metal(WM)exhibits an FCC phase regardless of the postweld heat treatment(PWHT)temperature(800 and 1000℃)without forming detrimental intermetallic compounds or microsegregation.The heat-affected zone of the CoCrFeMnNi-HEA showed CrMn oxide inclusions while that of the DSS showed no inclusions.Moreover,a lower hardness was recorded by the WM compared to the base metal after welding.After PWHT,the hardness of the WM,CoCrFeMnNi-HEA,and DSS decreased with an increase in the PWHT temperature.However,the decrease in the hardness of the HEA was more significant than in the WM and DSS.The cause for this reduction in hardness was attributed to recrystallization and grain growth.In addition,a strength of 584 MPa with low ductility was recorded after welding.The obtained strength was lower than that of the BMs,but comparable to that of the welded CoCrFeMnNi-HEA.The application of PWHT resulted in over a 20%increment in ductility,with only a marginal reduction in strength.The deformation mechanism in the as-weld joint was mainly dominated by dislocation while that for the PWHT joint was twinning.We propose laser beam offset welding as a technique to improve the mechanical properties of the dissimilar joint,which will be the subject of future studies.  相似文献   

13.
Abstract

A series of studies has been carried out to examine the weldability and properties of dissimilar steel joints using martensitic and austenitic stainless steels F6NM (OCr13Ni4Mo) and AISI 347, respectively. This type of joint requires good mechanical properties, corrosion resistance, and a stable magnetic permeability in addition to a good weldability. Weldability tests include weld thermal simulation of the martensitic steel to investigate the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the heat affected zone (HAZ); implant testing to examine the tendency for cold cracking of martensitic steel; and rigid restraint testing to determine hot crack susceptibility of the multipass dissimilar steel joints. The simulation results indicated that the toughness of the martensitic steel HAZ did not change significantly after the weld thermal cycles. The implant test results indicated that welds produced using nickel based filler show no tendency for cold cracking, whereas welds produced using martensitic or ferritic filler show such a tendency. Based on the weldability tests, a welding procedure (tungsten inert gas welding for root passes with HNiCrMo-2B wire followed by manual metal arc welding using ENiCrFe-3B coated electrode) was developed and a PWHT at 600°C for 2 h was recommended. Joints produced using the developed welding procedure are not susceptible to hot and cold cracking. After PWHT the joints exhibit both satisfactory mechanical properties and stress corrosion cracking resistance.

MST/1955  相似文献   

14.
304L(D)双牌号不锈钢产品的制造不可避免焊接过程,焊接接头也是最容易出现失效的位置,而现今304L(D)双牌号不锈钢的性能及使用在国内外均没有系统的研究及相应的标准。采用失重法结合腐蚀SEM形貌观察及蚀坑内部元素EDS谱,从腐蚀速率与化学成分方面分析了304L(D)双牌号不锈钢母材及焊缝的耐点腐蚀性能。结果显示:焊缝处耐点蚀性能最优而母材最次。所得腐蚀数据可以作为今后制定304L(D)双牌号不锈钢使用条件的参考。  相似文献   

15.
《Materials Letters》2005,59(19-20):2504-2509
In this study, standard AISI 304L austenitic stainless steel and AISI 4340 steel couple were welded by friction welding process using five different rotational speeds. The joining performances of AISI 304L/AISI 4340 friction-welded joints were studied and the influences of rotational speed on the microstructure and mechanical properties of the welded joints were also estimated. The microstructural properties of heat affected zone (HAZ) were examined by scanning electron microscopy (SEM). The microhardness across the interface perpendicular to the interface was measured and the strength of the joints was determined with tensile tests. The experimental results indicate that the tensile strength of friction-welded 304L/4340 components were markedly affected by joining rotational speed selected.  相似文献   

16.
Abstract

The welding of dissimilar joints is very common in systems used in oil exploration and production in deep sea waters. Commonly involves welding of low carbon steel pipes with low alloy steel forgings both with inner Inconel clad. The forged steel part undergoes a process of buttering with Inconel or carbon steel electrode before the weld of the joint. The buttering process is followed by a process of residual stresses relief. The conventional way of reducing the level of residual stresses in welded joints is to apply post welding heat treatments. Depending on the size and complexity of the parts to be joined, this can become a serious problem. An alternative technique for reducing residual stresses is to use an electrode that during the cooling process undergoes a displacive transformation at a relatively low temperature so that the deformation resulting from the transformation compensates the contraction during the cooling process, and, although many papers have been published in this direction using Fe–Cr–Ni alloys, most of them report a loss of toughness in the weld metal. Maraging steel is a family of materials with Ms temperature below 200°C and even without the final heat treatment of aging has superior mechanical properties to low alloy steels used in forgings. In this work, forged piece of AISI 4130 was buttered with Maraging 350 weld consumable and subsequently welded to ASTM A36 steel using Inconel 625 filler metal. In addition, the dissimilar base metal plates were welded together using Maraging 350 steel weld consumable. The levels of residual stress, and the toughness and microstructures of heat affected zone and weld metal were investigated.  相似文献   

17.
The dissimilar butt welded joint of reduced-activation ferritic/martensitic steel (RAF/M) F82H and austenite stainless steel (AISI304 (SUS304)) were studied by friction stir welding. The effect of the position of the steels and tool plunging was considered in order to prohibit the mixing of the F82H and SUS304. When the dissimilar butt welding was performed such that the F82H plate was on the advancing side and the tool was plunged on the F82H side, defect-free joints could be successfully fabricated. Optical microscopy and EDX analysis were used to characterize the dissimilar joint microstructures and the interface. It was confirmed that the dissimilar joint formed no mixed structure and inter-metallic compounds.  相似文献   

18.
用低碳不锈钢(ER308L)对304不锈钢进行手工钨极氩弧焊接(TIG),并将其分别置于硫酸、盐酸、6%FeCl3和混合酸溶液中进行电化学腐蚀试验,测试了焊接接头在不同介质中的电化学腐蚀行为、电化学特征值以及晶间腐蚀倾向.结果表明:随H2SO4浓度的升高,焊缝金属抗电化学腐蚀能力先减小后增大,在H2SO4浓度约60%时最差;随HCl浓度升高,焊缝金属抗电化学腐蚀能力逐渐下降,钝化区间短暂,活化区较长;在混合酸中焊缝金属钝化区间较宽,但没有明显的钝化平台;在6%FeCl3溶液中阳极极化曲线出现明显的点蚀特征;焊缝金属的抗电化学腐蚀性能好于母材,其在盐酸和硫酸中的电化学腐蚀性能与浸泡腐蚀结果一致;焊接接头没有产生晶间腐蚀.  相似文献   

19.
Deep penetration laser welding of 12 mm thick stainless steel plates was conducted using a 10 kW high-power fiber laser. The effect of the processing parameters on the weld bead geometry was examined, and the microstructure and mechanical properties of the optimal joint were investigated. The results show that the focal position is a key parameter in high-power fiber laser welding of thick plates. There is a critical range of welding speed for achieving good full penetration joint. The type of top shielding gas influences the weld depth. The application of a bottom shielding gas improves the stability of the entire welding process and yields good weld appearances at both the top and bottom surfaces. The maximum tensile stress of the joint is 809 MPa. The joint fails at the base metal far from the weld seam with a typical cup–cone-shaped fracture surface. The excellent welding appearance and mechanical properties indicate that high-power fiber laser welding of a 304 stainless steel thick plate is feasible.  相似文献   

20.
Nowadays, the Nd:YAG laser has been a promising key tool for joining thin components. In this research, mechanical and microstructural properties of laser welded thin austenitic stainless steel sheets were investigated with experimental investigations, as a function of laser welding parameters. Butt welded joints were made using a Nd:YAG laser in the pulsed wave mode. The appropriate laser welding parameters were found in order to obtain quality and strong weld seam. The pulsed laser seam welding process is controlled by a variety of parameters. We focus on the effects of the several processing parameters on mechanical and microstructural characteristics of joint and weld quality. The aim of this research was to evaluate the influence of these processing parameters on joint strength and microstructure. And also we examined the weldability of stainless steels in butt joint configuration by a pulsed Nd:YAG laser beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号