共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present investigation is to characterise cyclic deformation behaviour and plasticity-induced martensite formation
of metastable austenitic stainless steels at ambient and elevated temperatures, taking into account the influence of the alloying
elements titanium and niobium. Titanium and niobium are ferrite-stabilising elements which influence the ferrite crystallisation.
Furthermore, They form carbides and/or carbonitrides and thus limit the austenite-stabilising effect of carbon and nitrogen.
Several specimen batches of titanium and niobium alloyed austenite and of a pure Cr-Ni-steel for comparison were tested under
stress and total strain control at a frequency of 5 Hz and triangular load-time waveforms. Stress-strain-hysteresis and temperature
measurements were used at ambient temperature to characterise cyclic deformation behaviour. Plasticity-induced martensite
content was detected with non-destructive magnetic measuring techniques. The experiments yield characteristic cyclic deformation
curves and corresponding magnetic signals according to the actual fatigue state and the amount of martensite. Fatigue behaviour
of X6CrNiTil810 (AISI 321), X10CrNiCb189 (AISI 348) and X5CrNi1810 (AISI 304) is characterised by cyclic hardening and softening
effects which are strongly influenced by specific loading conditions. Martensite formation varies with the composition, loading
conditions, temperature and number of cycles. 相似文献
2.
3.
《Materials at High Temperatures》2013,30(3):198-203
AbstractThe tensile deformation behaviour of 316LN stainless steel was investigated from ambient temperature up to 1000°C. The hardness and microstructure of area near tensile fracture were characterised. The results show that the engineering stress increases smoothly with engineering strain when the tensile temperature is at 400°C or below, while the plastic deformation stage displays a serrated/jerky flow at 600°C. At tensile temperatures of 800°C or above, the plastic deformation stage is dramatically prolonged. The deformation mechanisms of 316LN stainless steel are proposed to be sliding and twinning at 400°C or below, tangle dislocations due to cross-slipping at 600°C, dynamic recovery at 700°C, and dynamic recrystallisation at 800°C or above. The finding provides useful guidelines for the processing and service of 316LN stainless steel components at high temperatures. 相似文献
4.
M. Bo
arek I. Alvarez-Armas A. F. Armas C. Petersen 《Materialwissenschaft und Werkstofftechnik》1986,17(9):317-327
The LC deformation behaviour of Zry-4 at 400°C and 600°C was examined by means of tension/compression experiments conducted in load and in strain control respectively. The main results were compared to those obtained at comparable conditions on the stainless steel type AISI 304. For both the materials the influence of the stress ratio R = σmin/σmax (where within one test σmax > 0 was kept constant) upon the lifetime Tf at low and high homologeous temperature Th was examined. Whereas at the lower Th for R < 0 the lifetime decreased with decreasing R, the opposite was true at the higher Th. The explanation of the influence of R upon tf suggests that at high temperatures the fatigue damage rate Åf drops below the rate for creep damage Åc Two cases are considered. If the above damage mechanisms are sequentially independent the resulting damage rate Å ≈? Åc and hence Åc is the failure (rate) determining mechanism. In the case that the mechanisms are sequentially dependent then Å ≈? Åf. TEM investigations conducted on Zry-4 cycled at 600° C have shown that the typical dislocation pattern revealed is a band structure consisting of dense dislocation walls separating denuded zones. The habit and the crystallographic characteristics of the band structure resemble the structure associated with PSBs observed in fee metals. The comparison of the values of the saturation stress τs and the wall spacing d for different fee and hep metals shows that there is a proportionality between τs and 1/d which is independent of stress and temperature. 相似文献
5.
Power applications generate high stresses which can damage piezoceramic components. In this study tensile fracture of several types of PZT (hard/soft) is investigated. After validation of the specimen geometry by means of numerical simulation, samples are led to failure using a specific device. Weibull law parameters enable the characterisation of the tensile strength distribution and highlight clear differences between soft and hard ceramics. A fractographic approach emphasises the specificities of the fracture mode and the fracture origin for each type of samples. 相似文献
6.
The influence of particle size and morphology on grain refinement in low stacking fault energy(SFE)alloys was studied by comparing the grain structures in single-and multi-phase Al-bronze(AB)alloys following equal channel angular pressing(ECAP)between 350 and 500℃.In particular,nickel aluminium bronze(NAB)was chosen as it contained both coarse and fine rounded particles,as well as a lamellar phase which evolved during ECAP.Grain refinement in the single-phase alloy was achieved through dynamic recrystallisation initiated at deformed twin boundaries.By contrast,different mechanisms were observed in the particle-containing NAB.Recrystallisation around the coarse κⅡ particles(~5 μm)was promoted through particle stimulated nucleation(PSN),whereas recrystallisation in the region of the fine κⅣ(~0.4μm)was delayed due to the activation of secondary slip.Grain refinement in areas of the lamellar κⅢ showed significant variation,depending on the lamellar orientation relative to the shear plane of ECAP.As the lamellae deformed,numerous high angle grain boundaries were generated between fragments and served as nucleation sites for recrystallisation,while PSN occurred around spheroidised lamellae.The spreading of the κⅢ particles by ECAP then enhanced the total area of recrystallised grains. 相似文献
7.
Xiang Zan Yuehui He Yang Wang Zhengxin Lu Yuanming Xia 《Journal of Materials Science》2010,45(23):6446-6454
Investigations are made on the effects of strain rates on the tensile behavior and deformation modes of Duplex Ti–46.5Al–2Nb–2Cr (DP TiAl) at temperatures ranging from room temperature to 840 °C and under strain rates of 0.001, 320, 800, and 1350 s−1. The dynamic strength is higher than quasi-static strength but does not change much over the high strain rate range. Yield stress anomaly is not found. Brittle-to-ductile transition temperature (BDTT) increases with the increased strain rates. A Zerilli–Armstrong constitutive model with appropriate coefficients is chosen to describe the high strain rate flowing behavior. TEM analysis indicates that both ordinary dislocations and superdislocations are found and dislocation pile-up only appears in samples deformed under quasi-static loadings at elevated temperatures. The deformation twins are common in equiaxed grains and the proportion of twinned grains increases with the increased strain rate from 46–72% under quasi-static loadings to 69–95% under high strain rate loadings. No deformation twins are found in lamellar colonies. 相似文献
8.
Barbara Ebel-Wolf Frank Walther Dietmar Eifler 《Materials Science and Engineering: A》2008,486(1-2):634-640
The magnesium alloys AZ91D and MRI 230D were investigated in form of die-cast specimens with a cast skin. The fine-grained microstructure consists of a dendritic magnesium solid solution and interdentritic precipitates. The cyclic deformation behaviour was characterised in stress-controlled load increase tests and constant amplitude tests by means of mechanical stress–strain hysteresis measurements at room temperature and at T = 150 °C. The MRI alloy leads to higher plastic strain amplitudes and nevertheless higher lifetimes for both temperatures. Load increase tests allow a reliable short-time estimation of the endurance limit under both, room and elevated temperatures. With the physically based fatigue life calculation method “PHYBAL” the lifetime of the magnesium alloys can be calculated on the basis of cyclic deformation data determined in one load increase test and two constant amplitude tests in excellent agreement with the conventionally determined S–N curve. 相似文献
9.
1Cr18Ni9Ti钢的低温拉伸变形行为 总被引:8,自引:0,他引:8
对1Cr18Ni9Ti钢在室温和低温下进行拉伸试验,利用TEM分析拉伸试样断口附近的显微组织,用SEM对拉伸断口进行观察,研究了温度对1Cr18Ni9Ti钢拉伸变形行为的影响.研究表明:随着试验温度的降低,1Cr18Ni9Ti钢的抗拉强度与屈服强度及加工硬化指数单调增加;延伸率呈降低趋势,并在温度降至77 K时略有回升;拉伸断口附近显微组织中出现板条马氏体,且温度降低,板条马氏体数量增加;低温与应变共同作用诱发板条马氏体形成是影响1Cr18Ni9Ti钢低温拉伸变形行为的重要因素. 相似文献
10.
《Materials Characterization》2007,58(6):575-579
The tensile deformation behavior of spray deposited FVS0812 heat-resistant aluminum alloy sheet was studied by uniaxial tension tests at temperatures ranging from 250 °C to 450 °C and strain rates from 0.001 to 0.1 s− 1. The associated fracture surfaces were examined by scanning electron microscopy (SEM). The results show that the degree of work-hardening increases with decreasing temperature, and exhibits a small decrease with increasing strain rate; the strain rate sensitivity exponent increases with increasing temperature. The flow stress increases with increasing strain rate but decreases with increasing temperature. The total elongations to fracture increase not only with increasing temperature, but also with increasing strain rate, which is in marked contrast with the normal inverse dependence of elongation on the strain rate exhibited by conventional aluminum alloy sheets. The SEM fracture analysis indicates that the dependence of elongation on the strain rate may be due to the presence of a transition from plastic instability at lower strain rates to stable deformation at higher strain rates for fine-grained materials produced by spray deposition. 相似文献
11.
《Materials Science & Technology》2013,29(5):419-426
AbstractThe effects of aging treatments on the tensile properties and microstructure of Al–Cr–Zr–Mn powder metallurgy aluminium alloys prepared from high pressure gas atomised powders were investigated. The alloy compositions were designed to give powders with or without Al13Cr2 intermetallics in the <45 μm size fraction. The Al–5·2Cr–1·4Zr–1·3Mn alloy is typical of the former (concentrated alloy) and the Al–3·3Cr–0·7Zr–0·7Mn alloy of the latter (dilute alloy). The alloys were prepared using a canning/degassing/extrusion sequence or the Conform consolidation process. Measurements of micro hardness and electron microscopy were used to correlate the microstructure with the tensile properties. The extruded powders of both alloys exhibited better properties than those of the Conformed powders. A large contribution to the strength of the extruded materials is made by their stabilised fine grain size. The dilute alloys had consistently better ductility. Neither alloy retained its strength after prolonged aging at 400°C, but the results indicate that a service temperature of 300°C may be possible.MST/1247b 相似文献
12.
《Materials Science & Technology》2013,29(2):175-186
AbstractWhen a material is deformed, most of the work done by the applied stress is dissipated as heat. For low rates of deformation or for small blocks of material, the loss of heat to the surroundings is rapid relative to the rate of heat generation and the temperature rise is therefore minimal. Under the opposite conditions however, a significant temperature profile can develop within the material. For thermally activated deformation at elevated temperatures, this can have a significant effect on the mechanical response. This is investigated theoretically in the present work. It is evident that the creep of materials in the presence of a temperature profile is central to the understanding and an analysis of this forms the first part of the paper, where creep under uniaxial stress, in bending and in torsion are treated. In the next section, deformation heating under adiabatic conditions is considered and finally, numerical analyses are given for cases where deformation heating occurs with concurrent conduction to the surroundings. Some examples where deformation self-heating is likely to be important are discussed. These include superplastic behaviour, thermal fatigue, rapid stress rupture tests, depressurisation of nuclear reactors, and the deformation of planetary material. 相似文献
13.
Plastic deformation behaviour in Ti–54.7 at.%Al and Ti–58.0 at.%Al single crystals was examined around and above the anomalous strengthening peak temperature (Tp) focusing on the effect of Al5Ti3 superstructure. The Al5Ti3 superstructure developed in the L10 matrix of Ti–58.0at.%Al, and the size of the Al5Ti3 phase once increased during annealing at 8008C and then decreased withincreasing temperature, while no significant evidence of the Al5Ti3 particles was obtained in Ti–54.7 at.%Al from TEM observation although diffuse scattering corresponding to the spots for the Al5Ti3 superstructure was observed. The transition of slip plane for ½<110]; ordinary dislocations from {111} to {110) and/or (001) occurred at and above Tp due to anisotropy of anti-phase boundary energies on {111}, {110) and(001) in the Al5Ti3 superstructure. Anomalous strengthening is related to the development of this superstructure which may assist the cross-slip of some parts of ½<110] ordinary dislocations onto {110) and/or (001) resulting in the formation of dragging points to the motion of the dislocations. 相似文献
14.
15.
为得到高强度和高塑性的镁基复合材料,通过高能超声分散法和金属型重力铸造工艺制备了SiC纳米颗粒分散均匀的SiCp/AZ91D镁基纳米复合材料,并进行T4固溶热处理和室温拉伸。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对试样拉伸后的显微组织和塑性变形机理进行观察与研究。结果表明:T4态SiCp/AZ91D镁基纳米复合材料室温下抗拉强度达到296 MPa,伸长率达到17.3%。经室温拉伸变形后复合材料基体微观组织中出现了大量的孪晶和滑移,孪生和滑移是复合材料塑形变形的主要机制。在室温拉伸过程中,α-Mg基体中SiC纳米颗粒周围形成高应变场,高应变场内形成大量位错和堆垛层错,这些位错和堆垛层错在拉伸应变的作用下演变成大量的滑移带和孪晶,这是SiCp/AZ91D镁基纳米复合材料在室温下具有高塑性的微观塑性变形机理。 相似文献
16.
《Materials Science & Technology》2013,29(9):1416-1421
AbstractMicrostructure evolution of the homogenised ZK40 magnesium alloy was investigated during compression in the temperature range of 250–400°C and at the strain rate range of 0·01–50 s?1. At a higher strain rate (?10 s?1), dynamic recrystallisation developed extensively at grain boundaries and twins, resulting in a more homogeneous microstructure than the other conditions. The hot deformation characteristics of ZK40 exhibited an abnormal relationship with the strain rate, i.e., the hot workability increased with increasing the strain rate. However, the dynamic recrystallisation grain size was almost the same with increasing the temperature at the strain rate of 10 s?1, while it increased obviously at the strain rates of 20 and 50 s?1. Therefore, hot deformation at the strain rate of 10 s?1 and temperature range of 250–400°C was desirable and feasible for the ZK40 alloy. 相似文献
17.
I.S. Kim B.G. ChoiH.U. Hong Y.S. YooC.Y. Jo 《Materials Science and Engineering: A》2011,528(24):7149-7155
The tensile behaviors of polycrystalline Ni-base superalloys have been studied in the temperature range of 25-980 °C. Anomalous increase of yield strength was observed in precipitation hardened superalloys at intermediate temperature. The alloy with high γ′ volume fraction showed a remarkable increase of yield strength at intermediate temperature. A peak of yield strength was observed in the alloy with low γ′ volume fraction at intermediate temperature while solid solution strengthened alloys did not have such peak. Abrupt decrease of ductility in the intermediate temperature regime was observed not only in the γ′ strengthened superalloys but also in the solid solution strengthened superalloy. This result implies that γ′ precipitation is not a substantial cause for the occurrence of the ductility minimum in the superalloys. It was found that twinning was an important deformation mechanism of the superalloys at intermediate temperature where ductility was abnormally low. Deformation twins formed easily in the superalloys whose reduction of stacking fault energy was high regardless of strengthening mechanisms because alloys with low stacking fault energy was prone to extend stacking faults. 相似文献
18.
《Materials Science & Technology》2013,29(2):209-219
AbstractPlasma transferred arc (PTA) surfacing is a surface engineering process in which a coating is deposited on the substrate by the injection of metal powders and/or ceramic particles into the weld pool created by the formation of a plasma plume. The present work involved the tribological evaluation of metal matrix composite (MMC) coatings deposited onto an aluminium alloy using the PTA technique. Coatings were fabricated by the deposition of an Al–Ni powder containing either Al2O3 or SiC particles. Dry sliding wear behaviour of the coatings was evaluated at ambient and elevated temperatures. Under sliding conditions of low applied stress and ambient temperature, reinforcement properties such as interfacial structure and fracture toughness have a significant influence on wear resistance. The SiC particles, which exhibit high interfacial bonding and toughness, support the matrix by acting as load bearing elements, thereby delaying the transition in wear mechanism as applied stress increases. As applied stresses exceed the fracture strength of the SiC and Al2O3 particles, these particles suffer fragmentation and/or debonding and no longer support the matrix. At higher stresses and elevated temperature, matrix properties such as flow stress and the tribolayer formation play more important roles in determining wear resistance. 相似文献
19.
《Materials Science & Technology》2013,29(12):1023-1026
AbstractCyclic stress response of ferritic Fe-19Cr-4Ni-2Al alloy was investigated under low cycle fatigue at elevated temperatures. The deformation microstructure developed was examined by transmission electron microscopy. The results showed that the alloy exhibited marked cyclic hardening at 773 K but continuous cyclic softening at 923 K. The cyclic hardening was considered to be associated with dynamic strain aging while the cyclic softening was interpreted in terms of the precipitate-dislocation interaction. 相似文献
20.
The cyclic stress response of two lithium-containing aluminium alloys aged to contain ordered precipitates was studied in different environments over a range of plastic strains. The specimens were cycled using tension-compression loading under total strain control. The peak-aged Al---Li---Mn alloy cyclically hardened to failure, whereas the peak-aged Al---Li---Cu alloy displayed softening for most of the fatigue life. The presence of shearable softening for most of the fatigue life. The presence of shearable precipitates in the two alloys results in a local decrease in resistance to dislocation movement, leading to a progressive loss of ordering contributions to hardening and slip concentration. This, coupled with the presence of precipitate free zones, promotes strain localization in intense slip bands and results in early crack nucleation. Transmission electron microscopy observations revealed homogeneous deformation in specimens cycled at high plastic strain amplitudes. However, at lower plastic strain amplitudes, deformation was inhomogeneous in the two alloy systems with the formation of intense planar slip bands. Results of this study reveal that the initial hardening observed is due to dislocation-dislocation and dislocation-precipitate interaction and that the softening observed in the Al---Li---Cu alloy is a mechanical and not an environmental effect. 相似文献