共查询到11条相似文献,搜索用时 77 毫秒
1.
2.
3.
短期风速多步预测的研究 总被引:1,自引:0,他引:1
为了提高风电场短期风速预测的精确度以及预测尺度,提出了一种将小波分解法、经验模式分解法及最小二乘支持向量机相结合对风速时间序列进行短期多步预测建模的方法。该方法采用小波分解法对风速信号进行分解,使之分解成不同频带的高频和低频分量;再利用最小二乘支持向量机对各分量建立预测模型,将各预测模型的预测值叠加可得到模型的预测结果。该模型称为预测模型Ⅰ。其次,将预测模型I的预测结果设为训练样本,采用经验模式分解法把训练样本集分解成若干本征模式分量和趋势项;再利用最小二乘支持向量机对各本征模式分量和趋势项建立预测模型,同时扩大模型的预测尺度;将各预测模型的预测值叠加可得该模型的预测结果。该模型称为预测模型Ⅱ。最后,将预测模型Ⅱ、Ⅰ的预测值叠加得到最终预测结果。实验结果表明,采用该方法预测的风电场短期风速的RMSE值为0.153,验证了该方法的有效性。 相似文献
4.
5.
为了解决语音信号问题,本文在传统小波阈值去噪方法的基础上提出了提出了一种基于经验模态分解的小波阚值去噪算法,并与小波阂值去噪法和EMD去噪效果相比较,试验结果证明,基于经验模态分解的小波去噪效果是相当有效和稳定的.为研究语音信号去噪处理提供了新的手段。 相似文献
6.
准确的负荷预测在电力调度、系统可靠性和规划中起着关键作用。针对各种不确定因素造成了电力需求的波动,本文提出了一种基于EEMD-CatBoost的短期负荷预测方法。模型利用集合经验模态分解(EEMD)对非平稳原始序列进行处理,将原始电力负荷数据分解为有限个固有模态函数(Intrinsic Mode Functions,IMF)和一个残差分量,以降低负荷序列的复杂度,再将分解后的各分量分别输入到CatBoost中预测,然后将每个分量的预测值重组,得到最终的负荷预测结果。以某地的实际数据为例,综合比较了该方法与现有电力负荷短期预测技术的性能。与现有基准相比,所提出的方法得到了相当精确的结果。 相似文献
7.
短期电力负荷随机性强、波动性大。为提高负荷预测精度,文章提出一种基于二次分解的卷积神经网络(CNN)与长短期记忆(LSTM)神经网络组合的预测模型。其首先采用自适应噪声完备集合经验模态分解(CEEMDAN)方法将原始负荷序列分解为若干固有模态分量和残差;然后,引入样本熵与K均值(SEK-means, SK),将分解得到的子序列重构为3个序列,并运用变分模态分解方法将重构分量中的强非平稳序列进行二次分解,建立CNN-LSTM模型,对分解得到的各个子序列分别进行预测;最后,将预测的结果叠加,以实现对负荷的有效预测。运用实际负荷数据从确定系数、平均绝对误差、均方根误差和平均绝对百分比误差这4种评价指标角度进行验证,结果表明,该模型与XGBoost、LSTM、CEEMDAN-LSTM和CEEMDANCNN-LSTM模型相比较,具有更高的拟合度和预测精度。 相似文献
8.
随着电力物联网的不断发展,用户级电力负荷预测在电力需求侧管理中呈现出日益重要的作用.为了提高用户级电力负荷预测的性能,本文提出一种基于K-means聚类与卷积神经网络特征提取的短期电力负荷预测模型.首先,利用K-means将用户聚为两类:对于日相关性强的用户,将相邻时刻和日周期的历史负荷作为输入,采用CNN模型提取特征进行预测;对于日相关性弱的用户,仅将相邻时刻的历史负荷输入到CNN模型进行预测.为了验证所提出算法的性能,我们在实际的用户负荷数据上做了实验,并与随机森林、支持向量回归机进行对比,结果表明本文所构建模型的预测平均绝对百分误差降低了20%以上. 相似文献
9.
传统神经网络在短期风速预测中,存在易陷入局部极值和动态性能不足等问题,从而导致风速预测精度较低。为了提高风速预测精度,提出一种基于关联规则的粒子群优化Elman神经网络风速预测模型。利用粒子群算法优化Elman神经网络模型参数,以提高算法的收敛速度,避免陷入局部极值,以得到最优的预测值。同时结合关联规则分析考虑气象因素,采用Apriori算法对风速与其他气象因素进行关联规则挖掘,并利用得到的关联规则对风速预测值进行修正与补偿。实验结果表明,所提出的预测模型的预测效果比传统模型的效果更佳,同时验证了结合关联规则考虑气象因素能够降低风速预测误差。 相似文献
10.
11.
针对当前基于奇异值分解的线性最小均方误差(SVD-LMMSE)法信道估计误差相对较大的问题,提出了一种基于经验模态分解和奇异值分解(EMD-SVD)差分谱的离散小波变换(DWT)域线性最小均方误差(LMMSE)自适应信道估计算法。在对信号进行最小二乘(LS)信道估计及预滤波处理后,运用DWT对信号的高频系数进行阈值量化去噪处理;然后结合基于EMD-SVD差分谱的自适应算法,将强噪声小波系数中微弱的有效信号提取出来,并进行信号的重构;最后根据循环前缀(CP)内、外噪声方差的均值设置相应门限,对循环前缀以内的噪声进行再次处理,从而进一步降低噪声的影响。对算法的误码率(BER)和均方误差(MSE)性能进行实验仿真,实验结果表明:所提算法的整体性能明显优于经典的LS算法、传统的LMMSE算法和目前较为流行的SVD-LMMSE算法,能够较好地降低噪声的影响,并可有效提升信道估计的精确度。 相似文献