首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In the present paper, SiO2 glass ceramic was joined to Ti–6Al–4V alloy with 35Ti–35Zr–10Ni–15Cu (wt-%) filler foil. The whole brazing process was performed under vacuum circumstances at different temperatures (850–1000°C) for several holding times (1–30 min). According to results of scanning electron microscopy, energy dispersive spectrometry, electron probe X-ray microanalysis and X-ray diffraction analysis, the reaction products of the interface are Ti2O, Zr3Si2, Ti5Si3, Ti based solid solution and Ti2(Cu,Ni). There is residual TiZrNiCu braze alloy on the SiO2 glass ceramic/Ti–6Al–4V alloy interface after brazing. Besides, the interface evolution model of the joint was described by four stages: diffusion and solution among atoms, formation of reaction products, precipitation and growth of reaction layers respectively.  相似文献   

2.
Abstract

The microstructures of Ti–Al layers produced by laser surface alloying of a Ti substrate have been investigated for Al contents in the range 17–36 at.–%. The alloyed layers were obtained using a continuous wave CO2 laser and a powder feed technique employing the following laser processing parameters: 1·8 kW power, 3 mm beam diameter, 7 mm s ?1 traverse speed, and feedrates of Al powder ranging from 0·03 to 0·07 g s ?1. The microstructures were disordered lath martensite α′ in 17 at.–%Al alloy, ordered massive and acicular martensite in 23 at.–%Al alloy, and ordered massive, acicular, and lath martensite in 30 and 36 at.–%Al alloys. The change in martensite type and morphology is discussed in relation to the available datafor the β to α′ transformation in Ti alloys.

MST/1437  相似文献   

3.
Abstract

Sputtered Ni–TiB2 coatings have been shown to protect Ti–6Al–4V and Inconel 718 substrates from solid particle erosion. However, before new erosion resistant coatings can be efficiently designed, it is essential that the role of mechanical properties in determining erosion resistance be fully understood. In this investigation, nanoindentation techniques were used to quantify the effects of substrate preparation, coating composition, and sputtering process parameters on the elastic moduli and indentation hardness of thin coatings deposited on Ti–6Al–4V and Inconel 718 substrates. The influence of these parameters on coating adhesion was determined using a conventional scratch test. Elastic moduli, indentation hardnesses, and coating adhesion were correlated with erosion behaviour. The erosion resistance of the coatings that exhibited microscopic ductility is dependent on the nodule diameter and coating properties such as hardness, elastic modulus, and fracture toughness.

MST/1697  相似文献   

4.
Abstract

Thermal residual stresses are very detrimental to the mechanical resistance of metal–ceramic joints and thin metallic foils acting as stress relieving interlayers have been used to reduce their effect. The present work presents finite element method simulations of the residual stress field in Al2O3–AISI 304 steel joints using interlayers. Different interlayer materials (Ti, Ni, Mo, and Cu) were considered, either separately or in combination. Calculations show that among the different interlayer materials considered, Cu and Ti/Cu are most effective in reducing the thermal stresses and that this role is determined mainly by the ductility of the interlayer material. The calculated results were validated by shear tests performed on real joints obtained by diffusion bonding and it was concluded that residual stresses control the mechanical resistance of the joints.  相似文献   

5.
Abstract

The injection of SiC particles (150 μm size) into laser surface melted commercial purity titanium, Ti–6Al–4V (wt-%) alloy, and Ti–2·5Cu (wt-%) alloy has been investigated using 1·75 kW laser power, 5 mm beam diameter, 0·15 g s?l powder flowrate and traverse speeds ranging from 7 to 20 mm ?l. Partial dissolution of SiC occurred and fine dendrites of TiC nucleated at the particle/matrix interfaces and also within the matrix. Silicon enrichment of the matrix and a eutectic constituent were observed. The microhardness of the melted zone was increased to 600–650 HV (500 g).

MST/964  相似文献   

6.
Abstract

A continuous SiC fibre reinforced Ti–6Al–4V composite was diffusion bonded in transient liquid phase to Ti–6Al–4V alloy plate using Ti–Cu–Zr amorphous filler metal. Joint strength increased with bonding time up to 1·8 ks and reached the maximum value of 850 MN m?2 which corresponded to 90% of the tensile strength of Ti–6Al–4V. The extent of deformation of Ti–6Al–4V in the vicinity of the bonding interface was small compared with that of solid diffusion bonding because of the low bonding pressure. The bonding layer had an acicular microstructure which was composed of Ti2Cu and α titanium with dissolved zirconium. Brittle products such as (Ti, Zr )5 Si3 or (Ti, Zr )5 Si4 were formed at the interface between the SiC fibres and the filler metal. These products existed only at the end of fibres, in very small amounts, therefore joint strength was not significantly affected by the products.

MST/1989  相似文献   

7.
《Thin solid films》2006,494(1-2):279-286
TiO2 films with uniform thickness were electrolytically deposited on AISI 316L stainless steel and Ti6Al4V substrates for potential use as color coded biocompatible coatings on biomedical implants. Deposition occurred via a peroxoprecursor method from solutions containing TiCl4 and H2O2. By optimizing electrolyte formulation and deposition parameters, thin stoichiometric titania films with almost uniform thickness-dependent interference colors, similar as known from the color anodization processes of Ti-alloys, were obtained. Crack-free films were found up to 140 nm on AISI 316L and up to 190 nm on Ti6Al4V substrates. After thermal annealing at 450 °C of as-deposited amorphous peroxotitanium hydrate films, Raman and transmission electron microscopy showed highly stoichiometric, nanocrystalline anatase films. Chemical depth profiling was performed by glow-discharge optical emission spectrometry (GD-OES), showing clearly a densification and loss of water during annealing. On AISI 316L, GD-OES revealed stoichiometric TiO2 films containing a small Fe (3–4 at.%) and Cr (1 at.%) contamination due to thermal diffusion from the substrate. On Ti6Al4V, the comparison between electrolytic TiO2 films and color-anodization in different sulfuric and phosphoric acid containing electrolytes showed significant higher purity of electrolytic films, absent of V, Al, S, P contaminations as they were found in anodic oxides (4–6 at.% Al, 1–2 at.% V), especially V and S being problematic in biomedical applications. Annealing greatly increased the mechanical properties of the green films. A nano-hardness of 5.5–6.6 GPa, elastic modules close to substrate modules, excellent adhesion and very ductile behavior were found from nanoindentation and scratch tests. Based on thickness uniformity, high purity and good mechanical properties, electrolytic TiO2 films are not only attractive as biocompatible colored coatings on non-anodizable biomedical alloys such as AISI 316L and CoCrMo, but also for Ti-alloys that are anodized for protective as well as coding reasons prior to implantation.  相似文献   

8.
A. K. Nath  R. Sridhar  P. Ganesh  R. Kaul 《Sadhana》2002,27(3):383-392
Laser welding of thin sheets of AISI 304 stainless steel was carried out with high power CW CO2 laser. The laser power utilized in the welding process was estimated using the experimental results and the dimensionless parameter model for laser welding; and also the energy balance equation model. Variation of laser welding efficiency with welding speed and mode of welding was studied. Welding efficiency was high for high-speed conduction welding of thin sheets and also in keyhole welding process at high laser powers. Effect of pre-oxidization of the surface and powder as filler material on laser power coupling is also reported. The paper also discusses effect of microstructure on the cracking susceptibility of laser welds.  相似文献   

9.
Abstract

Commercial purity Ti and a Ti 6242 alloy have been diffusion bonded to an AISI 316L stainless steel and an AISI 4130 low alloy steel. The microstructures of the as processed products have been analysed using optical metallography, scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) techniques. The interdiffusion of the different elements through the interface has been determined using energy dispersive spectroscopy microanalysis in both a SEM and a STEM. For the combinations AISI 316L–commercially pure Ti and AISI 316L–Ti 6242 several regions surrounding the original interface have been observed. Starting from the 316L side, first a α phase is observed, followed by an Fe2 Ti intermetallic, an FeTi intermetallic, and finally an Fe2Ti4O oxide just before the Ti and Ti 6242. Because the diffusion ofTi in Fe is faster than the diffusion of Fe in Ti, a Kirkendall effect is produced. In the AISI 4130–Ti 6242 combination a thin layer of TiC is observed at the interface, limiting the interdiffusion of elements.

MST/1746  相似文献   

10.
Abstract

The AISI?1045 steel surface was alloyed with preplaced ferrotitanium (Fe–Ti), ferromolybdenum (Fe–Mo) and graphite powders using a 5 kW CO2 laser. In situ carbide reinforced Fe based surface composite coating was fabricated. The results showed that (Ti,Mo)C particles with flower-like and cubic shapes were formed during laser cladding process. The growth morphology of the reinforcing (Ti,Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still the predominant growth mode under rapid solidification conditions. Increasing the amount of Fe–Mo in the reactants led to a decrease in carbide size and an increase in volume fraction of carbide but increased the crack sensitivity of the coating. The multiple carbides of (Ti,Mo)C created a higher microhardness and excellent wear resistance than TiC alone under dry sliding wear test condition.  相似文献   

11.
Linear friction welding (LFW) is an innovative joining method that can be used to obtain high-strength joints between dissimilar materials. A key factor that influences the joint's performances are the intermetallic compounds that could be formed during the welding process. These intermetallics are brittle and could compromise the mechanical performances of the joint. This article deals with the analysis of the LFW process of dissimilar titanium–stainless steel joints. Two different types of joints were studied: AISI 304–Ti6Al4V and AISI 316–Ti6Al4V. Particular attention was paid to characterizing the intermetallic compounds using scanning electron microscopy, Electron probe microanalysis and X-ray diffractometry. Zones with different microstructure were observed. Due to the diffusive phenomena occurring during the welding, Kirkendall effect and occurrence of several intermetallics were observed. Moreover, it was found that the joint with AISI 316 formed brittle intermetallic compounds, which led to crack formation close to the weld line.  相似文献   

12.
Mg–Al alloys were prepared via sintering combined with ball milling, and the effect of a transition metal (TM = Ti, V, Ni) on the hydrogen storage properties of these alloys was investigated; the alloys were characterized via X-ray diffraction, pressure composition isotherms, and differential scanning calorimetry. The results showed that the alloys were mainly composed of Mg and the Mg17Al12 phase, and the cell volume of these phases decreased after the addition of TM (TM = Ti, V, Ni), which is attributed to the improved hydrogenation kinetics of Mg–Al alloy. Moreover, the hydrogenation/dehydrogenation temperature of the Mg–Al alloy decreased with the addition of TM (TM = Ti, V, Ni). Ti, Ni, and V acted as a catalyst, thereby lowering the reaction barrier for dehydrogenation and promoting the reversible hydrogenation reaction of the Mg–Al alloy. The onset temperature of dehydrogenation of the Mg–Al–V alloy was ~244 °C, which was 66 °C lower than that of the Mg–Al alloy (~310 °C). And the apparent activation energy of the Mg–Al–V alloy was 80.1 kJ mol?1, where it was 34.6 kJ mol?1 lower than that of Mg–Al alloy.  相似文献   

13.
Abstract

This paper reports an investigation of the aging behaviour of two Co free Cr containing maraging steels (Fe–1·0Si–11·2Cr–1·3Mo–9·1Ni–1·2Al–1·0Ti and Fe–0·8Si–17·2Cr–6·1Ni–0·4Al–0·9Ti, all at.-%), using hardness measurements, electron microscopy of replicas and thin foils, atom probe field ion microscopy (APFIM), and thermochemical calculations. Two different families of intermetallic phases (Ti6Si7Ni16G phase and η Ni3Ti) have been found to contribute to age hardening. The composition and morphology of these precipitates were studied in deformed and undeformed alloys after aging at 420–570°C for various times. In addition, reverted austenite has been found in the aged structure. Results obtained using APFIM are compared with equilibrium thermodynamic calculations and previous APFIM studies of conventional Cr free low Al and Si maraging steels having higher Mo contents.

MST/1558  相似文献   

14.
《Materials Science & Technology》2013,29(11-12):1434-1436
Abstract

In the present work, thermodynamic calculations for several maraging systems have been carried out, and the results are compared with experimental data. The calculations were conducted using ThermoCalc. Excellent agreement is obtained between calculation and experimental measurements using mainly the atom probe. As a highlight, calculated equilibrium phases and their mole fractions in 1RK91 steel recently developed by Sandvik compare extremely well with atom probe microchemistry data, which showed the presence of copper rich particles, mixed Ni3Al and Ni3Ti, and molybdenum rich precipitates. Calculations also indicate the thermodynamic stability of μphase in the Fe–Ni–Mo and Fe–Ni–Co–Mo systems, Ni3Al and Ni3Ti in a chromium containing steel, and NiMn in a Fe–Ni–Mn system. However, it should be noted that thermodynamic calculations may only be used as a guideline for systems not in equilibrium.  相似文献   

15.
The overlapping welding was carried out in keyhole mode between austenitic stainless steel 304 l and aluminum alloy 5083 using a low power fiber laser in continuous irradiation. The significant content of magnesium as the alloying element with low boiling point and high vapor pressure inside the AA 5083 matrix can induce the spatter formation and depression on surface of the weld beads upon laser beam absorption and temperature growth which can deteriorate the mechanical properties and appearance of the joints. To reduce these defects, a variety of single and multi-components activating fluxes including oxide-based TiO2 and halide-based CaF2 flux powders were pre-placed on the surface of welding material prior to laser welding. The EDX and XRD analyses in addition to microhardness and shear tests were carried out to characterize the joints. The obtained results showed that, the oxide and halide activating fluxes can significantly improve the joints' strength up to 1.48 and 1.85 times in average respectively compared with autogenous joint. It was deduced that the simultaneous effect of significant decrease in joints' surface depression leading to welds' geometry improvement in addition to less formation of interfacial Fe–Al intermetallics, were the major causes for considerable strength improvements.  相似文献   

16.
Abstract

The elevated temperature phase transitions occurring during the continuous heating and cooling of two Ti3AI– (Nb, V:Mo) titanium aluminides, Ti–25Al–11Nb and Ti–26Al–10Nb–3V–1Mo (at.-%) were investigated using optical microscopy, calorimetric differential thermal analysis, and in situ high temperature X -ray diffraction. Both alloys initially consisted of α2 + β + O with continuous heating resulting in the sequential reaction: orthorhombic O → α2, dissolution/disordering of α2, and disordering of B2. Differences in the initial microstructures of the alloys, i.e. blocky and platelike primary α22P) colonies in a trahsformed β [Widmansüitten secondary α2s+ (β/B2)t] matrix in Ti–25Al–11Nb, and Widmanstatten α2P + (β/B2)t in Ti–26Al–10Nb–3V–1Mo, were found to affect α2 dissolution. Dissolution, eventually followed by disordering, of the two morphologically distinct ordered α2 microconstituents in Ti–25Al–11Nb occurred over two distinct temperature regions, while a single dissolution reaction of Widmanstätten α2 in Ti–26Al–10Nb–3V–1Mo was observed. Similar reversible transformations were observed on cooling from the β phase field, the quantities of primary and secondary α2 being rate dependent, decreasing cooling rate increasing the volume fraction of primary α2 while decreasing the volume fraction of secondary Widmanstätten α2.

MST/2014  相似文献   

17.
Abstract

The single crystal MD2 (Ni – 8Cr – 5Al –5Co– 2Mo– 8W–6Ta – 1Ti) and the polycrystalline Inconel 792 (Ni –13Cr – 3Al –9Co– 2Mo– 4W–4Ta– 4Ti) were exposed at 850 and 900°C in an severely sulfidising environment comprising synthetic air with 8% water vapour and 2000 ppm SO2, and a deposit of 20 mol% Na2SO4+80 mol% K2SO4 applied every 160 hours.

Results were evaluated in terms of mass change, which indicated the existence of an incubation time before the onset of extensive attack, and post-test metallography to evaluate metal loss. Metallographic studies are presented showing the complex external oxide scale formation and internal oxidation and sulfidation.  相似文献   

18.
Abstract

The processing parameters for hot working of Fe–15Cr–2.2Mo–15Ni–0.3Ti austenitic stainless steel (alloy D9) are identified using processing maps developed on the basis of the dynamic materials model and hot compression data in the temperature range 850–1250°C and strain rate range 0.001–100 s-1. The efficiency of power dissipation increased with increase in temperature and decrease in strain rate. Dynamically recrystallised microstructures resulted when the efficiency of power dissipation was in the range 27–37%, i.e. in the temperature range 1050–1250°C and strain rate range 0.001–0.5 s-1. Flow localisation occurred in the regions of instability at temperatures lower than 1000°C and at higher strain rates. The dynamic recrystallisation regime observed in this alloy is compared with other austenitic stainless steels, namely, AISI type 304L and 316L.  相似文献   

19.
Abstract

Self-propagating high temperature synthesis (SHS) is a process whereby reactants are ignited to spontaneously transform to products in an exothermic reaction. The aim of this study is to propose a method to join nickel aluminide with AISI 316 stainless steel by SHS and to study the combustion synthesis of nickel aluminide. From the heat of combustion synthesis junctions were formed between annular AISI 316 stainless steel and a powder metallurgy compact of Ni and Al blends. The Al mole ratio for testing the joining grade in the initial powder mixture varied from 25 at.-% to 40 at.-%. In order to check the sufficiency of the SHS reaction, the test temperature was compared with the thermodynamic calculation values. The metallographic analysis indicated that NiAl and Ni3Al were formed in the joint layer.  相似文献   

20.
Abstract

In the present paper, SiO2 glass ceramic and Ti–6Al–4V alloy were successfully brazed with Ag–21Cu–4·5Ti active braze alloy. The interfacial microstructure and evolution course of SiO2 glass ceramic/Ti–6Al–4V joint were studied in detail. According to the experimental results, active element Ti plays a quite important role in the formation of reaction layers on the joint interface. The reaction products of the joint are TiSi2, Ti4O7, TiCu, Cu2Ti4O and Ti2Cu respectively. The interface evolution can be generally described by four stages, which are solution and diffusion of atoms, reaction among atoms, formation of reaction layers and precipitation of solid solution layers respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号