首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The hot deformation behaviour of an Al–Li–Mg–Zr alloy was characterised in hot torsion and extrusion. The alloy was found to have similar hot ductility to existing high strength aluminium alloys, but this could be maintained at higher temperatures. Billets were extruded over a range of process conditions and a limit diagram was constructed for surface cracking. All the extrusions were found to be partially recrystallised after deformation, but the volume fraction of recrystallisation was a strong function of billet temperature and extrusion ratio. In addition, the unrecrystallised areas contained a recovered substructure where the subgrain size was inversely proportional to the temperature compensated strain rate. The as extruded structure was retained during solution treatment and as a result final mechanical properties were strongly dependent on the extrusion conditions. The use of high billet temperatures and low extrusion ratios gave the best combination of strength and toughness.

MST/839  相似文献   

2.
Abstract

Hot rolled Al–6Li–1Cu–1Mg–0·2Mn (at.-%) (Al–1·6Li–2·2Cu–0·9Mg–0·4Mn, wt-%) and Al–6Li–1Cu–1Mg–0·03Zr (at.-%) (Al–1·6Li–2·3Cu–1Mg–0·1Zr, wt-%) alloys developed for age forming were studied by tensile testing, electron backscatter diffraction (EBSD), three-dimensional atom probe (3DAP), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). For both alloys, DSC analysis shows that ageing at 150°C leads initially to formation of zones/clusters, which are later gradually replaced by S phase. On ageing at 190°C, S phase formation is completed within 12 h. The precipitates identified by 3DAP and TEM can be classified into (a) Li rich clusters containing Cu and Mg, (b) a plate shaped metastable precipitate (similar to GPB2 zones/S″), (c) S phase and (d) δ′ spherical particles rich in Li. The Zr containing alloy also contains β′ (Al3Zr) precipitates and composite β′/δ′ particles. The β′ precipitates reduce recrystallisation and grain growth leading to fine grains and subgrains.  相似文献   

3.
Effects of a small amount addition of Cr on glass-forming ability (GFA) and mechanical properties of Cu–Zr–Al bulk metallic glass were investigated. The GFA of (Cu46Zr46Al8)100−x Cr x (x = 0, 0.25, 0.5, 0.75, and 1 at%) alloys tends to decrease with the increasing Cr content. A good correlation between the GFA and the temperature interval of supercooled liquid region ΔT x or parameter γ exists in these alloys. Addition of an appropriate amount of Cr can significantly improve the plasticity of the alloys. The bulk metallic glass with x = 0.5 exhibits promising mechanical properties with high fracture strength of 1870 MPa and obvious plastic strain of 2.23%.  相似文献   

4.
Abstract

Effects of alloying elements Cr, Mn, Si, Cu and Zr on the microstructure and mechanical properties of Fe3Al (Fe–16Al) based alloy containing ~0·5 wt-%C have been investigated. Six alloys were prepared by a combination of air induction melting with flux cover and electroslag refining (ESR). ESR ingots were hot forged and hot rolled at 1373 K and were further characterised with respect to microstructure and mechanical properties. The base alloy and the alloys containing Cr, Mn, Si and Cu exhibit a two phase microstructure of Fe3AlC0·5 precipitates in Fe3Al matrix whereas the alloy containing Zr exhibits a three phase microstructure, the additional phase being Zr rich carbide precipitates. Cr and Mn have high solubility in Fe3AlC0·5 precipitates as compared to Fe3Al matrix whereas Cu and Si have very high solubility in Fe3Al matrix compared to Fe3AlC0·5 precipitate and Zr has very low solubility in both Fe3Al matrix and Fe3AlC0·5 precipitate. No significant improvement in room and high temperature (at 873 K) strengths was observed by addition of these alloying elements. Furthermore, it was observed that addition of these alloying elements has resulted in poor room and high temperature ductility. Addition of Cr, Mn, Si and Cu has resulted in marginal improvement in creep life, whereas Zr improved the creep life significantly from 22·3 to 117 h.  相似文献   

5.
Abstract

The short transverse fracture toughness of an Al–Li–Cu–Mg–Zr extrudate was determined as a function of aging condition and testing temperature. To elucidate the underlying micromechanisms, the short transverse fracture surfaces of the extrudate were characterised via scanning electron microscopy, grain boundary precipitates and precipitation free zones were identified via transmission electron microscopy, and segregation of elements to grain boundaries was analysed using secondary ion mass spectrometry. Three principal observations were made as follows. First, with increasing aging time, the short transverse toughness of the extrudate increased when tested at room temperature, but decreased at liquid N2 temperature, whereas with decreasing testing temperature, it remained essentially constant for the underaged condition, and decreased sharply for the peak aged and overaged tempers. Second, in addition to regions exhibiting shallow dimples, smooth ‘featureless’ zones were revealed on the short transverse fracture surfaces, which are intergranular in nature for all the specimens tested. The area fraction of the featureless regions decreased noticeably with increasing aging time when tested at room temperature, and increased markedly with decreasing testing temperature for the peak aged and overaged conditions. Third, segregation of Li, Si, Na, and H was detected for both the underaged and overaged specimens, and also of K for the underaged specimens only. In general, the enhancement of the room temperature short transverse toughness with aging and the negative effect of cryogenic temperature on fracture toughness are in obvious contrast to the in plane toughness behaviour reported in the literature, the featureless character of the short transverse fracture and its connection with poor toughness seldom having been emphasised. Based upon the present study, segregation induced brittleness is proposed as the critical micromechanism responsible for grain boundary weakness, and thus for the poor short transverse fracture toughness.

MST/1829  相似文献   

6.
Rapidly solidified powders of Al–5.0Cr–4.0Y–1.5Zr (wt%) were prepared by using a multi-stage atomization-rapid solidification powder-making device. The atomized powders were sieved into four shares with various nominal diameter level and were fabricated into hot-extruded bars after cold-isostatically pressing and vaccum degassing process. Influence of atomized powder size on microstructures and mechanical properties of the hot-extruded bars was investigated by optical microscopy, X-ray diffraction, transmission electronic microscopy with EPSX and scanning electron microscopy. The results show that the fine atomized powders of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy attains supersaturated solid solution state under the exist condition of multi-stage rapid solidification. With the powder size increasing, there are Al20Cr2Y (cubic, a = 1.437 nm) and Ll2 Al3Zr (FCC, a = 0.407 nm) phase forming in the powders, and even lumpish particles of Al20Cr2Y appearing in the coarse atomized powders, as can be found in the as-cast master alloy. Typical microstructures of the extruded bars of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy can be characterized by fine grain FCC α-Al matrix with ultra-fine spherical particles of Al20Cr2Y and Al3Zr. But a small quantity of Al20Cr2Y coarse lumpish particles with micro-twin structures can be found, originating from lumpish particles of the coarse powders. The extruded bars of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy by using the fine powders eliminated out too coarse powders have good tensile properties of σ0.2 = 403 MPa, σb = 442 MPa and δ = 9.4% at room temperature, and σ0.2 = 153 MPa, σb = 164 MPa and δ = 8.1% at high temperature of 350 °C.  相似文献   

7.
Abstract

Sintered Al2O3 was joined to Ni–Cr steel by the active metal brazing route with Ag–Cu–Zr brazing alloys containing Sn or Al. A single ZrO2 layer with a monoclinic structure was formed at the Al2O3 /brazement interface by the migration of Zr in the molten brazing alloy to the Al2O3 surface, followed by a redox reaction between the Al2O3 and Zr. The remainder of the brazement formed a Cu–Ag eutectic alloy. Precipitates CuZr2 and Cu–Zr–Al were formed in the brazements of the Ni–Cr steel/ Al2O3 joints brazed with Ag–Cu–Zr alloys and Al containing Ag–Cu–Zr alloys, respectively. On the other hand, no precipitates were formed in the brazement of the Ni–Cr steel/Al2O3 joints brazed with Sn containing Ag–Cu–Zr alloys. The Ni–Cr steel/ Al2O3 joints brazed with Sn containing Ag–Cu–Zr alloys showed much higher fracture shear strengths than those brazed with Ag–Cu–Zr alloys or Al containing Ag–Cu–Zr alloys.  相似文献   

8.
The atomic bonding of Al–Li alloy with minor Zr is calculated according to the “Empirical Electronic Theory in Solids”. The result shows that the stronger interaction between Al and Zr atoms, which leads to form the Al–Zr segregation regions, promotes the precipitation of Al3Zr particles and produces a remarkable refinement of Al3Li grains in the alloy. Because there are the strongest covalent Al–Zr bonds in Al3Zr and Al3(Zr, Li) particles, these covalent bonds can cause a great resistance for dislocation movement, and is favorable to strengthen the alloy. On the other hand, with precipitating the Al3(Zr, Li) particles, it causes the coherent interphase boundary energy of Al/Al3Li to decrease, and atomic bonding is well matched in between the interface of two phases.  相似文献   

9.
采用多弧离子镀技术,使用Ti-Al-Zr合金靶和Cr单质靶,在wc-8%co硬质合金基体上制备了TiAlZrCr/(Ti,Al,Zr,Cr)N多组元梯度膜.分析了梯度膜的成分、结构和微观组织,并研究了梯度膜的显微硬度和膜/基结合力.研究结果表明,该多组元梯度膜为Bl-NaCl型的TiN面心立方结构;薄膜的成分是以TiAlZrCr合金为过渡层的(Ti,Al,Zr,Cr)N梯度膜;薄膜的组织致密均匀,是典型的柱状晶结构;沉积偏压为-50~-200V时,梯度膜均可获得比(Ti,Al,Zr,Cr)N单层膜更高的硬度(最高值为HV4000)和膜/基结合力(临界载荷大于200 N).  相似文献   

10.
Wire arc additive manufacture (WAAM) technology was employed to repair Ti–6.5Al–2Sn–2Zr–4Mo–4Cr (TC17) titanium alloy, which is widely used as compressor blades and blisk. The microstructure evolution and mechanical properties of the repaired specimen were investigated. The results show that the repaired specimen has a good verticality, and it forms good metallurgical bonding with the base metal. The ultimate strength of the interface specimen can reach 88.2% of the base metal. The elongation is slightly lower than the base metal due to the fact that half of the tensile interface specimens with little deformation are base material. Therefore, WAAM technology might be a potential and economical method to repair damaged blade by optimising the WAAM process.  相似文献   

11.
Two routes were used to produce Cu–Zr–Al/Al2O3 amorphous nanocomposite. First route included mechanical alloying of elemental powders mixture. In second route Cu60Zr40 alloy was synthesized by melting of Cu and Zr. Cu60Zr40 alloy was then ball milled with Al and CuO powder. It was not possible to obtain a fully amorphous structure via first route. The mechanical alloying of Cu60Zr40, Al and CuO powder mixture for 10 h led to the reaction of CuO with Al, forming Al2O3 particulate, and concurrent formation of Cu62Zr32Al4 amorphous matrix. The thermodynamical investigations on the basis of extended Miedema’s model illustrated that there is a strong thermodynamic driving force for formation of amorphous phase in this system. Lack of amorphization in first route appeared to be related to the oxidation of free Zr during ball milling.  相似文献   

12.
13.
《Materials Science & Technology》2013,29(11-12):1334-1339
Abstract

For superplastic forming of aluminium to break out of the niche market that it currently occupies, alloys will be required to possess a higher strain rate capability, appropriate in service properties, and a significantly lower price and to be capable of volume production. This paper describes an approach that has been developed in an attempt to address these fundamental requirements. A series of Al–Mg–Zr alloys with increasing levels of zirconium (0–1 wt-%)has been prepared via extrusion consolidation of cast particulate (solidification rate ~103 K s-1). The superplastic properties of the resultant cold rolled sheet have been evaluated as a function of thermomechanical treatment and zirconium addition. It has been found that increasing the level of zirconium has the twofold effect of improving the superplastic properties of the alloy while significantly decreasing the concomitant flow stress. At present the optimum superplastic behaviour has been obtained at strain rates of 10-2 s-1, with the 1%Zr material exhibiting ductilities in excess of 600%. The manufacturing route produces a bimodal distribution of Al3Zr comprising >1 µm primary particles in combination with nanoscale solid state precipitates. The current postulation is that this high strain rate superplasticity is conferred by a combination of particle stimulated and strain induced recrystallisation.  相似文献   

14.
15.
采用多弧离子镀技术,使用Ti Al Zr合金靶和Cr靶,在W18Cr4V高速钢基体上沉积(Ti,Al,Zr,Cr)N多组元氮化物膜.利用扫描电镜(SEM)、电子能谱仪(EDS)和X射线衍射(XRD)对薄膜的成分、结构和微观组织进行测量和表征;利用划痕仪、显微硬度计测评薄膜的力学性能.结果表明,获得的多组元氮化物膜仍具有B1 NaCl型的TiN面心立方结构;薄膜的成分除-50V偏压外,其它偏压下的变化均不明显;增大偏压可减少薄膜表面的液滴污染,提高薄膜的显微硬度及膜/基结合力,最高值可分别达到HV3300和190N.  相似文献   

16.
Laser additive manufacturing (LAM) is a novel manufacturing technique in which metal components can be fabricated layer by layer. In this study, a recently developed damage tolerance titanium alloy TC21 (Ti–6Al–2Zr–2Sn–3Mo–1.5Cr–2Nb) was deposited by LAM process. Texture and microstructure characterization have been investigated by XRD, SEM and EBSD. Prior β grains texture analysis indicates that the (100) poles concentrate in build direction with a texture intensity about 18.7. During cooling down from β phase field, the β to α phase transformation follows the Burger orientation relationship and a pronounced variant selection occurred. Besides, morphology and scale of α phase are quite different along the build direction due to different thermal history. Very fine rib-like α phase with the length less than 2 μm and acicular martensite α' can be obtained at the bottom and the top of the sample, respectively. In the middle position, distribution and morphology of α phase is quite uneven and the precipitation sequence of α phase is αGB  αWGB  αWM  αS. The reasons by which they formed are discussed.  相似文献   

17.
Abstract

Nanocrystalline Fe–Ni–Cr–Al alloy coatings with ~4 wt-%Al were produced using the unbalanced magnetron sputter deposition technique with a composite 310S stainless steel target embedded with aluminium plugs. The oxidation behaviour of the coatings was studied, during which complete external α-Al2O3 scales were formed. During isothermal oxidation tests at 950, 1000, and 1050°C, the oxidation kinetics followed an essentially parabolic rate law, and the oxidation constants were measured to be 2·06 × 10-3, 4·23 × 10-3, and 1·14 × 10-2 mg2 cm-4 h-1 respectively. During a cyclic oxidation test at 1000°C the α-Al2O3 scale showed good scale spallation resistance. The surface hardness of the coatings was measured with a Knoop indentor before and after oxidation. After oxidation, the coating surface hardness was still significantly higher than that of the uncoated specimen, demonstrating the potential this coating has in the improvement of high temperature erosion resistance.  相似文献   

18.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

19.
Abstract

Superplasticity in terms of total tensile elongation was studied in a titanium alloy of nominal composition Ti–6·5Al–3·3Mo–1·6Zr (wt-%) for three strain rates (1·04 × 10?3, 2·1 × 10?3, and 4·2 × 10?3s?1) and in the temperature range 1123–1223 K for microstructures obtained by different processing schedules. Fine equiaxed microstructure with a low aspect ratio of 1·15 was accomplished in this alloy by combining two types of deformation. While the first step consists of heavy deformations for refining and intermixing the phases, a second step, consisting of light homogeneous reductions in several stages, was necessary to remove the banding that developed during the first step. The resulting microstructure underwent enormous tensile elongation (1700–1725%), even under relatively high strain rates (1·04 × 10?3 and 2·1 × 10?3s?1), making this alloy most suitable for commercial superplastic forming. The present investigation also revealed that the usual sheet rolling practice of heavy reductions to refine the microstructure leads to localised banding which could not be removed by annealing; therefore, the tensile elongation was limited to 770% only. The reason for this may be attributed to the resistance in grain boundary sliding and rotation encountered in microstructures with shear bands and grains with high aspect ratio. Strain enhanced grain growth was also greater in these microstructures.

MST/555  相似文献   

20.
We have studied the local atomic arrangements of a Zr0.60Al0.15Ni0.25 bulk metallic glass (BMG) with molecular dynamics (MD) simulations based on a plastic crystal model (PCM). We have utilized features of orientationally disordered state of a molecule in plastic crystals. A Zr0.618Al0.146Ni0.236 alloy with an approximated composition to the Zr0.60Al0.15Ni0.25 has been created using MD–PCM from a Zr0.73Ni0.27 glassy alloy that possesses critically percolated Ni atoms. The MD–PCM dealt with icosahedral and tetrahedral clusters with 13 and five atoms, respectively, with a Ni, Al, or Zr atom at each center site of the clusters. After the Zr0.73Ni0.27 glassy alloy had been created with monatomic MD simulation by quenching from a liquid, the Zr and Ni atoms in the Zr0.73Ni0.27 glassy alloy were replaced with randomly oriented icosahedral and tetrahedral clusters, respectively. Subsequently, structural relaxation was performed after adjusting the density to that of the Zr0.618Al0.146Ni0.236 alloy. Total pair-distribution and interference functions revealed that the Zr0.618Al0.146Ni0.236 alloys created with MD–PCM exhibit the characteristics of a non-crystalline phase. Further, Voronoi polyhedra analysis revealed that the Ni-centered polyhedral clusters used as initial atomic arrangements for MD–PCM tend to reproduce the features of the conventional MD results. The origin of the excellent glass-forming ability of the Zr0.618Al0.146Ni0.236 alloy is attributed to the critically percolated cluster-packed structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号