共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。 相似文献
4.
为提升核相关滤波跟踪算法(KCF)在目标出现遮挡时的鲁棒性,提出一种结合不变矩特征的核相关滤波跟踪算法。以不变矩特征描述目标,通过初始模型与待测目标之间的相似度变化情况,设定遮挡判断机制;利用相似度的大小将模型更新机制中的学习率分段,实现目标模型的自适应更新。为测试算法的有效性,采用OTB-2013评估数据集,实验结果表明,与KCF算法相比,该算法在跟踪精度上提升了7.4%,在成功率上提升了10.8%。 相似文献
5.
6.
为解决视觉目标跟踪的遮挡、尺度变化及背景杂波问题,在核相关滤波算法基础上,引入平均峰值相关能量遮挡判据,提出一种自适应融合多特征的抗遮挡核相关滤波算法(AMFKCF)。初始化目标特征及尺度因子,将提取、融合的目标多个特征和尺度因子训练位置和尺度滤波器,得到目标的中心位置响应,根据遮挡判据,引入卡尔曼位置滤波器,对未遮和遮挡的目标中心位置进行补偿。AMFKCF算法与主流算法在CVPR 2013 Benchmark数据集中进行对比,结果表明,AMFKCF算法与主流算法相比精度提高了0.115,成功率提高了0.083,中心位置误差提高了14.67个像素,距离精度提高了9.75个百分点。能够较好地解决遮挡、尺度变化、背景杂波等问题,且兼具核相关滤波算法的优点。 相似文献
7.
8.
9.
摘要:针对传统核相关滤波(KCF)在跟踪彩色视频序列不能有效利用颜色特征,并且处理目标遮挡和形变能力低等问题,提出一种响应置信度的多特征融合核相关滤波跟踪算法。该算法首先提取目标图像的方向直方图特征和颜色直方图特征,通过计算高响应值点在响应图上层的占比,来判断目标的跟踪情况,进而调整学习率的大小;然后用两种特征的平均峰相关能量(APCE)和最大响应峰值的乘积来加权融合目标位置。实验对比表明,提出的跟踪算法在精度和成功率上相对于KCF算法分别提升了12.8%和22.6%, 在目标发生遮挡、快速移动、旋转等复杂情况下仍然具有较强的鲁棒性。 相似文献
10.
为了降低目标追踪过程中光照变化、尺度变化、局部遮挡等因素的影响,提出一种引入目标分块模型的核相关滤波(KCF)目标追踪算法。首先,通过融合方向梯度直方图特征和色名属性特征来更好地表征目标;其次,通过构建尺度金字塔对目标进行尺度预测;最后,利用特征响应图的峰值旁瓣比值检测遮挡,并通过引入高置信度分块重定位模块和模型自适应动态更新来处理局部遮挡问题。在多个数据集上与当前多个主流算法进行对比实验,实验结果表明,所提算法具有最高精度和成功率,且比KCF算法分别提升了11.89%和15.24%,表明所提算法在应对光照变化、尺度变化、局部遮挡等因素时具有更强的鲁棒性。 相似文献
11.
12.
针对传统单目标的核相关滤波器(KCF)跟踪算法在目标尺度变化的跟踪中存在的问题,提出了一种基于相关滤波器(CF)和尺度金字塔的多尺度核相关滤波器(SKCF)跟踪算法。首先通过传统KCF跟踪算法中分类器的响应计算当前目标是否受到遮挡,在未受到遮挡的情况下,对当前目标建立尺度金字塔;然后通过相关滤波器求取尺度金字塔的最大响应得到当前目标尺度信息;最后使用新目标图像为训练样本更新目标的外观模型和尺度模型。与核化的结构化输出(Struck)算法、KCF算法、跟踪-学习-检测(TLD)算法和多示例学习(MIL)算法进行对比,实验结果表明,所提出的多尺度核相关滤波器(SKCF)跟踪算法在五种算法中精确度和重合度都取到最高值。所提算法能够广泛应用于目标跟踪领域,对目标进行准确的跟踪。 相似文献
13.
目的 复杂环境下,运动目标在跟踪过程中受尺度变换以及遮挡因素的影响,跟踪准确率较低。针对这一问题,提出一种遮挡判别下的多尺度相关滤波跟踪方法。方法 首先选取第1帧图像的前景区域,训练目标的位置、尺度滤波器和GMS(grid-based motion statistics)检测器。然后,通过位置滤波器估计目标位置,尺度滤波器计算目标尺度,得到初选目标区域。最后,利用相关滤波响应情况对初选目标区域进行评估,通过相关滤波响应值的峰值和峰值波动情况判断是否满足遮挡和更新条件。若遮挡,启动检测器检测目标位置,检测到目标位置后,更新目标模型;若更新,则更新位置、尺度滤波器和GMS检测器,完成跟踪。结果 本文使用多尺度相关滤波方法作为算法的基本框架,对尺度变化目标跟踪具有较好的适应性。同时,利用目标模型更新机制和GMS检测器检索目标,有效地解决了遮挡情况下的目标丢失问题。在公开数据集上的测试结果表明,本文算法平均中心误差为5.58,平均跟踪准确率为94.2%,跟踪速度平均可达27.5 帧/s,与当前先进的跟踪算法相比,本文算法兼顾了跟踪速度和准确率,表现出更好的跟踪效果。结论 本文提出一种新的遮挡判别下的多尺度相关滤波跟踪算法。实验结果表明,本文算法在不同的尺度变换及遮挡条件下能够快速准确跟踪目标,具有较好的跟踪准确率和鲁棒性。 相似文献
14.
针对遮挡情况下相关滤波算法跟踪精度下降的问题,提出了一种基于多子块联合估计的核相关滤波跟踪方法。首先依据初始帧跟踪框的几何特征对目标自适应分块,并采用KCF方法对各子块独立跟踪得到联合置信图;然后以上帧目标的位置及尺度作为先验信息对搜索区域采样,同时将样本框中置信图的权值密度作为观测值,利用粒子滤波算法实现候选目标的最优估计;最后对置信度较低的子块反向投影至上帧图像进行遮挡检测,防止模板错误更新。定性和定量实验结果表明,该方法与原始KCF算法相比跟踪精度提升约10%,具有良好的抗遮挡性,并对目标尺度变化具有一定的估计能力。 相似文献
15.
现有跟踪算法大都需要构建复杂的外观模型、抽取大量训练样本来实现精确的目标跟踪,会产生庞大的计算量,不利于实时跟踪。鉴于此,提出了一种多通道核相关滤波的实时跟踪方法。首先,利用核化岭回归方法对视频帧的目标信息进行训练,学习得到滤波模板;接着,用滤波模板对待检测帧的可能区域进行相关性度量;最后,将相关度最高的位置作为跟踪结果,并通过对多通道的独立输入进行加权求和,解决多通道输入问题。与现有跟踪方法的大量对比实验表明,在不同的挑战因素下,该方法在保证跟踪精度的同时,跟踪速度也存在明显优势。该方法通过相关滤波的方式可避免抽取大量样本,并利用频域的点乘代替时域的相关运算,大大降低了计算复杂度,使跟踪速度完全满足实时场景的跟踪需求。 相似文献
16.
为了解决核相关滤波(KCF)跟踪器中目标尺度固定的问题,提出了一种尺度自适应的跟踪方法。首先利用Lucas-Kanade光流法跟踪相邻视频帧之间特征点的运动,引入前向后向跟踪方法保留可信特征点;其次将可信点用于尺度变化估计;然后将尺度估计应用到可调高斯窗上;最后运用前向后向跟踪算法来判断目标是否处于被遮挡状态,修改了模板更新策略。解决了核跟踪滤波器中目标尺度固定的限制,使得跟踪器更具鲁棒性与准确性。在目标跟踪视频集上测试算法效果。实验结果表明,所提算法在成功率图与精确度图排名上均优于原KCF、TLD、Struck算法。与原方法相比,改进后的方法能更好地适用于有尺度变化与遮挡的跟踪。 相似文献
17.
18.
针对TLD (tracking-learning-detection)算法实时性和鲁棒性差的问题,提出一种改进的FD-CFTLD (foreground detection-correlation filter TLD)目标跟踪算法。以TLD算法为基本框架,在检测模块采用帧差法进行前景检测,减小检测区域,提高检测速度;在跟踪模块采用核相关滤波(kernelized correlation filter,KCF)算法,并采用新的更新策略,使用检测模块修正后的跟踪结果更新跟踪器中的滤波器模型,提高跟踪的鲁棒性和精确度。实验结果表明,FD-CFTLD算法的成功率和精确度优于TLD算法,在应对光照变化、尺度变化和遮挡等场景时表现出良好的鲁棒性和实时性。 相似文献