首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg–Zn–Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg–Y–RE–Zr) were investigated by means of long-term static immersion testing in Hank’s solution, non-static immersion testing in Hank’s solution and cell-material interaction analysis. It was found that, among these three magnesium alloys, ZK30 had the lowest degradation rate and the least hydrogen evolution. A magnesium calcium phosphate layer was formed on the surface of ZK30 sample during non-static immersion and its degradation caused minute changes in the ion concentrations and pH value of Hank’s solution. In addition, the ZK30 alloy showed insignificant cytotoxicity against bone marrow stromal cells as compared with biocompatible hydroxyapatite (HA) and the WE-type alloy. After prolonged incubation for 7 days, a stimulatory effect on cell proliferation was observed. The results of the present study suggested that ZK30 could be a promising material for biodegradable orthopedic implants and worth further investigation to evaluate its in vitro and in vivo degradation behavior.  相似文献   

2.
Abstract

The hot deformation behaviour of an Al–Li–Mg–Zr alloy was characterised in hot torsion and extrusion. The alloy was found to have similar hot ductility to existing high strength aluminium alloys, but this could be maintained at higher temperatures. Billets were extruded over a range of process conditions and a limit diagram was constructed for surface cracking. All the extrusions were found to be partially recrystallised after deformation, but the volume fraction of recrystallisation was a strong function of billet temperature and extrusion ratio. In addition, the unrecrystallised areas contained a recovered substructure where the subgrain size was inversely proportional to the temperature compensated strain rate. The as extruded structure was retained during solution treatment and as a result final mechanical properties were strongly dependent on the extrusion conditions. The use of high billet temperatures and low extrusion ratios gave the best combination of strength and toughness.

MST/839  相似文献   

3.
Microstructures and phase compositions of as-cast and extruded ZK60–xDy (x?= 0–5) alloys were analysed by optical microscope, scanning electron microscope, X-ray diffraction and differential scanning calorimetry. Meanwhile, the tensile mechanical property was tested. With increasing Dy content, Mg–Zn–Dy new phase increases gradually, while MgZn2 phase decreases gradually to disappear. As-cast microstructure is refined gradually; meanwhile extruded one is refined further with decreasing average grain size to 1 μm for ZK60–4·32Dy alloy. Second phase, tending to distribute along grain boundary by continuous network in as-cast state, breaks and distributes dispersedly in extrusion state. As-cast tensile mechanical property remains almost unchanged at ambient temperature; however, extruded ones are enhanced significantly at ambient and elevated temperatures, respectively. Tensile strength at 298 and 473 K increases gradually from 355 and 120 MPa for ZK60 alloy to 395 and 171 MPa for ZK60–4·32Dy alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.  相似文献   

4.
The tensile and fatigue strength of cast Mg–xNd–0.2Zn–0.45Zr alloys (x = 0, 1, 2, 3 wt%) in both solution-treated (T4) and solution + 200 °C peak-aged (T6-PA) conditions were investigated in the present study. The results indicate that Neodymium (Nd) is an effective element to improve both the tensile and fatigue properties of cast Mg–0.2Zn–Zr alloys. The strengthening effect depends on its content in a way of power function (σ = σ0 + K C Nd n ), where the power exponent n is about 0.52–0.54 for yield strength (YS) and 0.59–0.61 for fatigue strength. The yield strengthening effect of Nd element in the form of precipitates (T6-PA) is about three times of that as solution atoms (T4), while the fatigue strengthening effect of Nd element in the form of precipitates is only about 50 % higher than that as solution atoms. The improved strength (both YS and ultimate tensile strength) can lead to the same amount improvement of the fatigue strength in T4-treated alloys, while only can cause less than half improvement of the fatigue strength in T6-PA-treated alloys.  相似文献   

5.
Lead-free alloys have attracted great attentions recently due to the toxic nature of lead for the human body. In this study, low amounts of Mg and Sb were added to the Cu65–Zn35 brass and microstructure, mechanical properties and machinability of samples were compared to Cu65–Zn35 brass. Both Mg and Sb led to the promotion of β′ phase as well as the formation of new ternary copper rich intermetallic particles. It was found that these particles had a significant role in the reduction of the ultimate tensile strength, toughness, work hardening and elongation while increasing the hardness of samples. Results of machinability evaluation of samples showed that the cutting forces were decreased significantly and morphology of chips were improved compared to Cu65–Zn35 brass sample.  相似文献   

6.
7.
Abstract

In the present work, the effects of Zn content on the microstructures and mechanical properties of as cast Mg–xZn–5Y–0·6Zr alloys (x?=?2, 5, 8 and 13 wt-%) have been investigated. The results show that the ternary Mg–Zn–Y phase compositions change with Zn/Y ratios induced by the change in Zn content. It is found that the fracture is mainly decided by the characteristics and distribution of second phase rather than the grain size. The influences of these phases, especially the W phase, on the mechanical properties of the alloys have been discussed. Both ultimate tensile strength (UTS) and elongation decrease with the increase in Zn content, while the instance of yield strength (YS) is just the reverse. The W phase is easily cracked because of its brittleness and easy to result in decohesion from the matrix because of the weak atomic bonding, which greatly degrade the UTS and elongation. It can be concluded that the YS closely depends on the grain size, while UTS and elongation closely depend on the volume fraction of eutectic compound (α-Mg+W phase).  相似文献   

8.
The effects of Y and Zn/Y on hot tearing susceptibility (HTS) of Mg–6.5Zn–xY–0.5Zr (x?=?4, 9, 12 and 18) and Mg–5Zn–13.5Y–0.5Zr alloys were investigated herein. The results illustrated that HTS of the investigated alloys decreased in the following order: Mg–6.5Zn–4Y–0.5Zr?>?Mg–6.5Zn–18Y–0.5Zr?>?Mg–6.5Zn–9Y–0.5Zr?>?Mg–6.5Zn–12Y–0.5Zr?>?Mg–5Zn–13.5Y–0.5Zr. The results also showed that HTS of the α-Mg-based alloy containing only LPSO phase was lower than that of the alloy containing only W-phase and (I+W) or (W+LPSO) mixed secondary phases. This was attributed to the coherence relationship between LPSO phase and α-Mg, and the bridging effect of LPSO phase.  相似文献   

9.
Abstract

The dependence on temperature of the impact toughness in Al–Li–Cu–Mg–Zr alloys was investigated focusing on the low temperature impact toughness. The impact toughness of Al–Li–Cu–Mg–Zr alloys in the low temperature region (≤ 423 K) increased with decreasing temperature. Laminated cracks, the number of which increased with the increase in impact toughness in the low temperature region, were observed and it was suggested that the appearance of these cracks resulted in part of the increase of the impact toughness of this alloy. The spectra of potassium and sodium were detected from the fracture surface of a specimen tested at room temperature. This indicates that a low melting point metal phase seems to affect the impact toughness near room temperature, i.e. this phase seems to produce the liquid metal embrittlement locally at the grain boundary.

MST/787  相似文献   

10.
In this research, binary Mg–Zn (up to 3 wt% Zn) and ternary Mg–Zn–Gd (up to 3 wt% Gd, 3 wt% Zn) alloys were prepared by induction melting in an argon atmosphere. The structures of these alloys were characterized using light and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence. In addition, Brinell hardness measurements were taken to supplement these studies. Corrosion behavior was evaluated by immersion tests and potentiodynamic measurements in a physiological solution (9 g/l NaCl). Depending on the composition, structures of the as-cast alloys contained α-Mg dendrites, MgZn, Mg5Gd and Mg3Gd2Zn3 phases. Compared to pure Mg, zinc improved the corrosion resistance of binary Mg–Zn. Gadolinium also improved the corrosion resistance in the case of Mg–1Zn–3Gd alloy. The highest corrosion rate was observed for Mg–3Zn–3Gd alloy. Our results improve the understanding of the relationships between the structure and corrosion behavior of our studied alloy systems.  相似文献   

11.
Strength, ductility and fracture toughness are the most important mechanical properties of engineering materials. In this work, an Al–Zn–Mg–Cu alloy was subjected to multi-directional forging (MF) and ageing treatment. Microstructural evolution was studied by optical and electron microscopy and strength, ductility and fracture toughness were researched. After MF, the dislocation density was increased and the microstructure was refined. The strength and fracture toughness were increased, while the ductility was decreased sharply. Without compromising the strength, the ductility was improved significantly after ageing. The fracture toughness was increased further. The coarse and discontinuously distributed grain boundary precipitates were found to be responsible for higher fracture toughness of the fine-grained structure Al–Zn–Mg–Cu alloy.  相似文献   

12.
A new model based on least square support vector machines (LSSVM) and capable of forecasting mechanical and electrical properties of Al–Zn–Mg–Cu series alloys has been proposed for the first time. Data mining and artificial intelligence techniques of aluminum alloys are used to examine the forecasting capability of the model. In order to improve predictive accuracy and generalization ability of LSSVM model, a grid algorithm and cross-validation technique has been adopted to determine the optimal hyper-parameters of LSSVM automatically. The forecasting performance of the LSSVM model and the artificial neural network (ANN) has been compared with the experimental values. The result shows that the LSSVM model provides slightly better capability of generalized prediction compared to back propagation network (BPN) in combination with the gradient descent training algorithm. Considering its advantages of the computation speed, unique optimal solution, and generalization performance, the LSSVM model is therefore considered to be used as an alternative powerful modeling tool for the aging process optimization of aluminum alloys. Furthermore, a novel methodology hybridizing nondominated sorting-based multi-objective genetic algorithm (MOGA) and LSSVM has been proposed to make tradeoffs between the mechanical and electrical properties. A desirable nondominated solution set has been obtained and reported.  相似文献   

13.
In this research, effect of minor alloying element Ca on microstructure, mechanical and bio-corrosion properties of as-cast Mg–3Zn–0.3Zr–xCa (x?=?0, 0.3, 0.6, 0.9) alloys were investigated for biomedical application. The result showed that Ca played a dual role in mechanical properties and corrosion resistance. With minor Ca addition, the microstructure of the alloy is significantly refined and more uniform. The elongation, tensile strength and corrosion resistance of the studied alloys increases and then decreases with the increase of Ca content. With increasing the Ca content to 0.6?wt-%, the new strip phase of Ca2Mg6Zn3 can be found, and gives the best strength and corrosion resistance. It was thought that the alteration of the second phase and the microstructure affect the mechanical and bio-corrosion properties.  相似文献   

14.
Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.  相似文献   

15.
The quench sensitivity of some typical high strength Al–Zn–Mg–Cu alloys, including 7075, 7175, 7050, 7010, 7055, 7085 and 1933, was investigated by time–temperature-properties (TTP) diagrams which were from the present paper and literature. The drop in the mechanical properties due to decreased quenching rate was predicted by quench factor analysis method. The nose temperature of TTP diagrams was the highest for 7055 alloy and the lowest for 7085 alloy. The critical time at the nose temperature was the shortest for 7055 alloy and the longest for 1933 alloy. Decreased quenching rate to 10 k/s led to drop in the properties less than 2% for 7085 and 1933 alloys, but more than 20% for 7075, 7175 and 7055 alloy. Thus, 7075, 7175 and 7055 alloys were the most quench sensitive alloys, while 7085 and 1933 alloys were the least quench sensitive ones. The differences in the quench sensitivity of these alloys were explained mainly based on its chemical compositions.  相似文献   

16.
The main challenge for the application of magnesium and its alloy as degradable biomaterials lies in their high degradation rates in physiological environment. In the present work, the biodegradable behavior of a patent magnesium alloy Mg–Nd–Zn–Zr (JDBM) and a reference alloy AZ31 was systematically investigated in Hank's physiological solution. The corrosion rate of JDBM (0.28 mm/year) was much slower than that of AZ31 (1.02 mm/year) in Hank's solution for 240 h. After corrosion products were removed, smooth surface of the JDBM was observed by SEM observation compared to many deep pits on the surface of AZ31. Open-circuit potential and potentiodynamic polarization results manifested that pitting corrosion did not occurred on the surface of JDBM at the early period of immersion time due to the formation of a more protective and compact film layer suggested by electrochemical impedance spectroscopy study. The corrosion rate of magnesium alloys was found to slow down in dynamic corrosion in comparison with that in the static corrosion. This provided the basis for scientific evaluation of in vitro and in vivo corrosion behavior for degradable biomagnesium alloy. The present results suggest that the new patent magnesium alloy JDBM is a promising candidate as degradable biomaterials and is worthwhile for further investigation in vivo corrosive environment.  相似文献   

17.
Abstract

The microstructures and age hardening behaviours of a series of Mg–Al–rare earth (RE) alloys that had been either pressure die cast or permanent mould cast were investigated by SEM and analytical TEM. Two types of phases, Al4MM and Al12Mg17, were found in the as cast alloys and no pseudoternary Mg–Al–RE phases were present. The Al4MM phase was thermally stable during solution treatment at temperatures as high as 500°C, whereas Al12Mg17 partially dissolved in the α-Mg matrix during solution treatment at 420°C. No rare earth containing precipitates formed during heat treatment of the investigated alloys but two types of Al12Mg17 precipitation took place. Colonies of discontinuous precipitation containing alternate lamellae of α-Mg and Al12Mg17 formed preferentially in regions α-Mg with high aluminium content. Spheroidisation and coarsening of the discontinuous precipitates occurred after aging at 200°C. Continuous precipitation of Al12Mg17 also occurred and these precipitates had a rodlike morphology and grew in preferred crystallographic directions.

MST/3382  相似文献   

18.
In this paper, the effect of Cu and Zn addition on mechanical properties of indirectly extruded Mg–2Sn alloy was investigated. Mg–2Sn–0.5Cu alloy exhibits a moderate yield strength (YS) of 225?MPa and an ultimate strength of 260?MPa, which are much higher than those of the binary Mg–2Sn alloy, and the elongation (EL) evolves as ~15.5%. Mechanical properties of the Mg–2Sn–0.5Cu alloy are deteriorated with more 3 wt-% Zn addition, and YS and EL are reduced as 160?MPa and ~10%. The detailed mechanism is discussed according to the work-hardening rate and strengthening effect related to the grain sizes, second phases and macro-textures. Grain refinement and proper texture are believed to play a critical role in both strength and ductility optimisation.  相似文献   

19.
Guo  Yue  Zhang  Jianhai  Zhao  Hongwei 《Journal of Materials Science》2021,56(24):13429-13478

Al–Zn–Mg–Cu alloys can be fabricated by a series of thermo-mechanical processing methods (e.g., hot rolling, forging and extrusion), which is able to serve in aeronautic, automobile, and marine industries because of its excellent physical properties. However, reaching the balance between high strength and favorable ductility to present its high performance is still in progress, during which temperature and strain rate are two very important external variables. More importantly, the core lies in sophisticated microstructure evolution paths involved in hot deformation, which consists of different microstructure mechanisms and behaviors and can be expressed as various mechanical responses. Therefore, a fundamental review of microstructure mechanisms and behaviors, microstructure evolution and relevant mechanical responses of Al–Zn–Mg–Cu alloys during high-temperature deformation is of great significance. In present paper, first, various experimental methods have been introduced. Second, general trends of mechanical properties changing with temperature and strain rate have been summarized. Third, major microstructure mechanisms and behaviors have been discussed. Then, a schematic illustration originating from dislocations’ movement has been depicted, which succeeding microstructure evolution and mechanical responses (including superplasticity) have been reviewed accordingly. Finally, further suggestions of hot deformation of Al–Zn–Mg–Cu alloys have been given.

  相似文献   

20.
The influence of Y on the microstructure, phase composition and mechanical properties of the extruded Mg–6Zn–xY–0.6Zr (x = 0, 1, 2, 3 and 4, in wt%) alloys has been investigated and compared by optical microscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer and tensile testing. The increase in Y content has shown grain refinement effects on the microstructure morphologies of the extruded alloys. However, when the content of Y exceeds 2.2 wt%, the grain refinement effect of the Y is not obvious any more with the increase of the Y content. The quasicrystal I-phase (Mg3YZn6), face-centred cubic structure W-phase (Mg3Y2Zn3) and a long period stacking ordered (LPSO) X-phase (Mg12YZn) can precipitate in different ranges of Y/Zn ratio (in at.%) when the Y content in the Mg–Zn–Y–Zr alloys is varied. Comparison of the mechanical properties of the alloys showed that the different ternary Mg–Zn–Y phases have different strengthening and toughening effects on the Mg–Zn–Y–Zr alloys in the following order: X-phase > I-phase > W-phase > MgZn2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号