共查询到18条相似文献,搜索用时 109 毫秒
1.
传统的案例查询算法通过被动响应用户的查询请求为用户返回与查询请求相关的案例,忽略了用户查询行为能够对案例查询过程进行指导。提出了一个基于用户查询行为模型的案例查询算法,通过收集用户的查询请求,利用用户查询行为之间的相似度建立用户查询行为的分类模型;分析了用户查询行为的分类算法,重点论述了用户查询行为模型对案例查询过程的指导过程。实验结果表明,该方法能够有效地提高查询结果召回率以及查询成功率。 相似文献
2.
社区发现是复杂网络研究中的一项重要研究内容,基于节点相似度的凝聚方法是一种典型的社区发现方法。针对现有节点相似度计算方法中存在的不足,提出一种基于多层节点的节点相似度计算方法,该方法既可以有效地计算节点之间的相似度,又可以解决节点相似度相同时的节点合并选择问题。进一步基于这种改进的节点相似度计算方法和团体之间的连接紧密度度量准则构建社区发现模型,并在真实世界的网络上进行社区发现实验。与GN算法、Fast Newman算法和改进的标签传播算法的实验结果相比,该模型可以更加准确地找到各个社区的成员。 相似文献
3.
针对信息检索中查询与文档集之间可能存在的“词不匹配”问题,基于兴趣模型提出一种将概念化的兴趣知识与向量空间模型相结合的查询扩展方法。该方法能根据阈值来判断查询扩展是否可行。用户的兴趣偏好是通过Agent代理实时获取的,兴趣知识采用HNC(Hierarchical Network of Concepts, 概念层次网络)理论的概念符号体系表达,这样便于计算概念之间的相似度。实验结果表明,经过查询扩展后的结果相对于未加入查询扩展的结果在性能上提高了29.1%。 相似文献
4.
针对标签传播算法中节点启动顺序和更新标签的随机性造成的结果不稳定问题,提出一种新标签传播算法用于复杂网络社区检测(density peaks and node similarity,DPNS-LPA),包括社区中心的确定和外围节点的标签传播。首先利用大度节点不利指标、Jaccard指标和度为1节点的结构特性刻画节点局部相似性指标,并用此指标度量节点间距离和解决最大标签相同时的随机选择;然后引入改进的密度峰值聚类算法寻找社区中心,确定社区数量;最后基于社区中心和外围节点的标签传播,得到最终的社区划分结果。通过人工网络和真实网络上的实验,结果表明标准化互信息、模块度和d-score指标值优于对比算法,所提出的算法可以有效发现复杂网络中的社区结构,且鲁棒性更高。 相似文献
5.
为了准确、快速地发现大规模复杂网络中的局部社区,提出了一种基于节点接近度的局部社区发现算法。该算法以最大度节点作为起始节点,利用节点接近度和局部社区Q值不断搜索其邻居节点,将接近度最大的节点加入初始社区形成新的初始社区;同时,该算法也可以应用于复杂网络全局社区结构的划分。对2个典型复杂网络进行了局部社区挖掘分析,实验结果表明,该算法能够有效识别隐藏在实验网络中的局部社区。针对稀疏网络,该算法的时间复杂度为O(nlog(n)),n为网络节点数。 相似文献
6.
《计算机应用与软件》2016,(7)
为了更好地对微博进行表示,提高微博情感倾向性识别的准确度,提出一种基于Skip-gram模型的微博情感倾向性分析方法。首先,使用Skip-gram模型在中文数据上进行训练得到词向量;然后,利用词向量在词语表示上的优势,以及一定程度上满足加法组合运算的特性,通过向量相加获得微博的向量表示以及正负情感向量;最后,通过计算微博向量和正负情感向量的相似度判断微博的情感倾向。在NLP&CC2012数据上进行实验,结果表明,该方法能够有效识别微博的情感倾向,较传统的JST(Joint Sentiment/Topic model)和ASUM(Aspect and Sentiment Unication Model)平均F1值分别提高了23%和26%。 相似文献
7.
针对GN算法在发现重叠社区时存在的不足,以及为了降低算法时间复杂度,提出一种基于网络图中连边相似度划分连边集的重叠社区发现算法EGN。算法依据网络图的连边集进行划分,每一条边被划分到某个特定的社区,而一个节点可以关联多条连边,因此节点可以被划分到不同的社区,从而发现重叠社区。EGN算法首先需要构造网络节点之间连边关系的边图;然后根据边图中节点的关系计算网络图中连边的相似度,在节点之间相似度的基础上提出了连边之间相似度的计算方法;再按照相似度由小到大对边图删除边,构建出边图的树状图。树状图的每一层对应网络的一个划分,采用划分密度函数来衡量划分的质量,以此寻找最优的划分。最后将算法应用到Zachary空手道俱乐部网络中,并与GN算法进行对比,实验结果表明EGN算法能够很好地发现重叠社区。 相似文献
8.
针对目前重叠社区发现算法时间复杂度较高、社区发现稳定性较差的问题,基于标签传播和COPRA方法,提出一种基于三级邻居节点影响力分析的重叠社区发现算法OCDITN。使用三级邻居节点影响力度量方法TIM(three-level influence measurement)计算节点间的影响力,根据节点影响力确定选择更新节点的顺序;在节点标签更新策略中,根据计算节点与其邻居之间的相似度确定邻居节点标签的更新顺序,计算各节点标签隶属度,发现重叠社区。实验分别基于人工模拟网络数据集和真实世界网络数据集进行测试,与SLPA、LPANNI、COPRA算法相比,该算法在EQ和Qvo两个评价标准上性能分别提升7%和12%,社区划分结果更稳定,社区划分质量更高。 相似文献
9.
重叠社区发现是近些年来社交网络分析中的一个热门课题,但大部分算法有着时间复杂度高或健壮性差的缺点。本文构造了一种节点相似度计算方法,针对FCM的缺陷提出改进,从而利用该改进的Fuzzyc-means计算出每个节点的隶属度;然后设定阅值决定每个节点的类别,实现了重叠社区发现;接下来在真实数据集上的对比实验结果表明该算法在有较低的时间复杂度同时能有效的发现网络中的重叠社区结构。 相似文献
10.
复杂网络中的社区结构能帮助人们认识网络的基本结构及其功能。针对目前多数社区划分算法准确率低、复杂度高的问题,提出了一种基于共邻节点相似度的社区划分算法。首先,为了计算节点间相似度值,提出了相似度模型,该模型通过将被测节点对的邻居节点引入一并计算,提高了相似度度量的准确性;然后,计算节点局部影响力值,能客观地表现出节点在所处网络中的重要性;其次,结合节点相似度值和节点局部影响力值对节点进行层次聚类,完成网络社区结构的初步划分;最后,通过聚合初步划分的子社区,获得复杂网络的最优模块度值。仿真结果表明,在网络的社区特征模糊时,与新的基于局部相似度的社区发现算法(CDALS)相比,所提算法的准确率提高了14%,证明了所提提法更能够准确、有效地划分复杂网络的社区结构。 相似文献
11.
12.
社区搜索旨在寻找包含给定节点集的社区,能够快速获取个性化的社区信息.针对现有社区搜索算法难以满足复杂搜索条件的现状,提出条件社区搜索这一新问题.解决该问题有助于对社交网络进行智能分析,在复杂搜索条件下为用户提供更好的社区结果.首先,基于布尔表达式,给出条件社区搜索问题的形式化定义,可有效表达给定节点不能出现在社区内以及给定节点中至少有一个出现在社区内的要求.接着,提出解决条件社区搜索问题的通用框架,包括对搜索条件进行简化、根据简化后的搜索条件进行多次单项条件社区搜索、合并各单项条件社区搜索的结果等主要步骤.同时,提出"社区搜索+过滤"的方法和给点加权的方法来进行单项条件社区搜索.最后,真实数据集上的大量实验结果表明所提方法的正确性和有效性. 相似文献
13.
针对复杂网络结构划分过程复杂、准确性差的问题,定义了节点全局和局部相似性衡量指标,并构建节点的相似性矩阵,提出一种基于节点相似性度量的社团结构划分算法.其基本思路是将节点(或社团)按相似性合并条件划分到同一个社团中,如果合并后的节点(或社团)仍然满足相似性合并条件,则继续合并,直到所有节点都得到准确的社团划分.实验结果表明,所提算法能成功正确地划分出真实网络中的社团结构, 性能比标签传播算法(LPA)、GN(Girvan-Newman)、CNM(Clauset-Newman-Moore)等算法优秀,能有效提高结果的准确性和鲁棒性. 相似文献
14.
针对目前社团结构检测算法计算量大以及不稳定的问题,在经典的Newman快速与LPAm的基础上提出了一种基于局部信息的社团发现新算法。算法利用节点度和共享邻居数定义节点相似度,并结合两个预设参数,逐步优化社团结构。性能分析证明,该算法不仅具有线性阶时间复杂度,而且是一种稳定的算法。实验结果表明,该算法在准确度上优于Newman快速和LPAm,且可行与有效。 相似文献
15.
复杂网络中普遍存在着一定的社团结构,社团检测具有重要的理论意义和实际价值。为了提高复杂网络中社团检测的性能,提出了一种基于结构相似度仿射传播的社团检测算法。首先,选取结构相似度作为节点之间的相似性度量,并采用了一种优化的方法来计算复杂网络的相似度矩阵;其次,将计算得到的相似度矩阵作为输入,采用快速仿射传播(FAP)算法进行聚类;最后,得到最终的社团结构。实验结果表明,所提算法在LFR(Lancichinetti-Fortunato-Radicchi)模拟网络上的社团检测平均标准化互信息(NMI)值为65.1%,要高于标签传播算法(LPA)的45.3%以及CNM(Clauset-Newman-Moore)算法的49.8%;在真实网络上的社团检测平均模块度值为53.1%,要高于LPA算法的39.9%以及CNM算法的47.8%,具有更好的社团检测能力,能够发现更高质量的社团结构。 相似文献
16.
针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N.算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点.将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比.实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测. 相似文献
17.
In this paper,a computationally effective algorithm based on tabu search for solving the satisfiability problem(TSSAT)is proposed.Some novel and efficient heuristic strategies for generating candidate neighborhood of the curred assignment and selecting varibables to be flipped are presented. Especially,the aspiration criterion and tabu list tructure of TSSAT are different from those of traditional tabu search.Computational experiments on a class of problem insteances show that,TSSAT,in a reasonable amount of computer time ,yields better results than Novelty which is currently among the fastest known.Therefore TSSAT is feasible and effective. 相似文献
18.
属性图中的社区搜索是一种局部社区发现方法,本质是基于用户提供的查询节点返回包含查询节点且在结构内聚的同时属性与查询属性相似的个性化子图.该任务有助于用户更好地理解社区是如何形成的以及社区形成的原因.提出了一种融合结构-属性交互二部图随机游走机制,有效地支持属性图中的社区搜索.具体地,首先基于网络拓扑结构构建结构概率转移... 相似文献