首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
贺建超  张田仓  李菊 《焊接学报》2019,40(4):119-124
对Ti2AlNb合金进行了线性摩擦焊试验以及焊后热处理研究. 着重分析了Ti2AlNb合金线性摩擦焊接头焊合区,热力影响区的显微组织特点以及组织演变规律,结合焊后热处理,探讨了热处理温度对接头的影响规律. 试验结果表明,采用线性摩擦焊可实现Ti2AlNb合金可靠连接,接头无微裂纹、孔洞等缺陷. 焊态Ti2AlNb合金接头的焊合区为亚稳态β组织和极少量的变形α2相,热力影响区含变形α2相和O相,以及亚稳态β相. 热处理后,针状O相在亚稳态β相中析出,并随着热处理温度升高(从700 ~ 900 ℃)而长大. 700 ℃热处理后,接头显微硬度明显升高,但随着热处理温度的升高,显微硬度下降.  相似文献   

2.
常川川  张田仓  李菊 《焊接学报》2019,40(3):140-144
对Ti-22Al-27Nb合金进行了线性摩擦焊及热处理试验,并对热处理前后焊接接头的微观组织和显微硬度进行测量分析. 结果表明,利用线性摩擦焊方法焊接Ti-22Al-27Nb合金得到的接头无焊接缺陷. 焊态下,焊缝区形成了B2单相区组织. 热力影响区为B2 + O + α2相三相区,出现等轴α2相,针状O相几乎消失. 热处理后在焊缝区析出板条状O相和针状O相,热力影响区为O相均匀分布的两相区. 母材处的显微硬度值最低约为300 HV,随着向焊缝靠近,显微硬度值逐渐增加,焊缝中心达到最大值354 HV. 热处理后,由于板条O相和针状O相的沉淀析出,使焊缝中心显微硬度急剧增加.  相似文献   

3.
利用光学显微镜OM和透射电子显微镜TEM研究了Ti2AlNb/TC11双合金经近等温锻造、梯度热处理后以不同时间在550℃热暴露的显微组织变化.结果表明,热暴露期间,接头及Ti2AlNb基体组织有B2→O+β分解发生,α2相向B2晶界迁移,热暴露时间越长,α2相偏聚越严重,在热暴露100h时聚集成块状,同时随热暴露时间的延长,β相变得粗大,体积分数增加,当接头部位的铝、铌含量高时,α2相在晶界偏聚成块,同时原始O相与B2相分解而来的次生O相叠加而导致其粗化.  相似文献   

4.
李菊  张田仓  郭德伦 《焊接学报》2018,39(5):97-100,120
针对热处理前后TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织和性能进行了对比分析. 结果表明,焊态时焊缝区组织发生动态回复和再结晶,两侧的热力影响区组织均被不同程度地拉长,热处理后焊缝中的亚稳相分解析出弥散的α和β相,TC17(α+β)侧热力影响区的初生α相有所长大. 焊态接头焊缝区显微硬度比母材低,接头的抗拉强度和屈服强度略低于母材,分别达到母材的91.9%,96.2%,接头拉伸性能试件断裂位置均在焊缝区;经过热处理,母材显微硬度未发生明显变化,焊缝区显微硬度显著提高,接头抗拉强度和屈服强度达到与母材相当,与焊态相比分别提高11.9%,8.2%,接头拉伸性能试件断于母材区.  相似文献   

5.
基于先进飞机构件研制需求,针对TC21钛合金线性摩擦焊接头,设计了3种热处理制度,开展了焊态及不同热处理状态下接头显微组织及力学性能研究. 结果表明,焊态试样的焊缝区由细化的β晶粒组成,晶内析出含有大量位错的针状马氏体,起到了位错强化作用,显微硬度相比母材明显提高,热力影响区由于次生α相发生了溶解,显微硬度相比母材有所降低. 热处理后焊接接头内的α相发生了显著变化,在高温区退火时,长时间保温导致初生条状α相长大,在低温区退火则促进了次生针状α相的析出;所有热处理后的接头进行拉伸试验后均断裂于母材区,经过双重退火的接头其焊缝区及热力影响区组织均为β转变组织+初生长条状α相 + 次生针状α相,并且各区域显微硬度基本与母材一致,组织更加均匀.  相似文献   

6.
文中采用SEM、EBSD及TEM等表征手段分析了惯性摩擦焊接头在焊态及焊后热处理态下的微观组织形貌与分布特征,并研究了焊后热处理态下的接头力学性能。结果表明,焊缝区为单一等轴α晶粒,在焊态下由板条状马氏体α′相+晶界片状αp相+亚稳态β相构成,并伴随着(0001)//ND丝织构。热处理后转变为晶界片状αp相+晶内片状αs+β相,在原有丝织构的基础上形成了(21 ?1 ?3)[21 ?1 ?9]取向织构;焊缝区显微硬度最高,随着向母材区过度显微硬度逐渐降低,焊后热处理可降低焊缝区硬度,使接头硬度分布较为均匀。接头在室温下的拉伸试验均断裂于远离焊缝中心的母材区。  相似文献   

7.
TA19钛合金惯性摩擦焊接工艺   总被引:3,自引:2,他引:1       下载免费PDF全文
采用惯性摩擦焊接工艺对TA19钛合金进行了焊接试验研究,针对不同工艺参数下的焊接接头力学性能进行了室温拉伸、高温拉伸及显微硬度等测试,并对优选工艺后焊接接头显微组织进行了分析. 结果表明,TA19钛合金具有良好的惯性摩擦焊接性,在合理焊接工艺条件下能得到高强度焊接接头;焊接接头各区域中焊缝区显微硬度最高,随着向母材区过渡,显微硬度逐渐降低;焊缝区为典型的动态再结晶组织,主要由少量沿β相晶界分布的沿晶α相+α′马氏体组成,热力影响区由变形初生α相+α′马氏体组成,热影响区微观组织与母材相近,仅有部分板条状β相及板条状次生α相发生交叉分布.  相似文献   

8.
对TA19钛合金进行了线性摩擦焊试验。对部分试样进行了焊后热处理,利用光学显微镜、扫描电镜和显微硬度计对热处理前后接头组织和显微硬度进行了对比分析。结果表明,焊缝区组织为典型的动态再结晶组织,等轴的β晶粒内部弥散分布着α'马氏体和针状α相;热力影响区以变形组织为主,其中靠近焊缝区域的β晶粒内部发生了动态回复和再结晶;热影响区的片间β相上有细小的针状α相析出。经过565℃焊后热处理,焊缝区α'马氏体相以及热力影响区和热影响区的亚稳β相分解为弥散的(α+β)相;随着热处理温度升高,有第二相质点析出。接头的显微硬度比母材高,焊缝中心的硬度最高,随着向母材方向过渡,硬度逐渐降低;热处理后接头的显微硬度略有提升。  相似文献   

9.
实现了20 mm厚的15%SiCp增强2A14铝基复合材料搅拌摩擦对接焊,并对接头的微观组织和力学性能进行了分析。结果表明:SiCp/2A14复合材料焊接接头可以划分为四个区域,分别是母材(BM)、热影响区(HAZ)、热力影响区(TMAZ)和焊核区(NZ)。其中,BM区的组织呈现轧制条带状,该组织在HAZ受热发生了粗化;在TMAZ中,能够观察到由细小晶粒组成的挤压流线状组织;然而在NZ中,条带状组织消失,形成了均匀细小的等轴晶;并且NZ中SiC颗粒和白色相Al4C3得到充分细化,呈弥散均匀分布。接头的显微硬度最低值出现在HAZ和TMAZ的交界处,此处也是FSW接头断裂位置。接头的抗拉强度、屈服强度和断后伸长率分别为278 MPa、255 MPa和2.77%,分别达到母材的83.91%、77.62%和71.76%。通过数字图像相关法(DIC)测得接头的最大局部应变为16.8%。接头的断裂模式为韧性断裂和脆性断裂的混合断裂模式。  相似文献   

10.
对7 mm厚Ti180双相钛合金电子束焊接接头采用不同焊后热处工艺(550~700℃,8 h),研究热处理温度对接头的显微组织和力学性能的影响。结果表明:热处理后Ti180电子束焊接头焊缝区和热影响区的残余β相上生成纳米级针状α相和球状亚微米级颗粒Ti5Sn3。随着热处理温度的升高,次生针状α’相逐渐减少,纳米级针状α相逐渐粗化,球状亚微米级颗粒逐渐回溶,使得接头的焊缝区和热影响区的显微硬度逐渐减小。此外,接头的常温抗拉强度和伸长率逐渐下降,而高温抗拉强度和伸长率整体上呈现随热处理温度先下降后上升的变化趋势。在热处理参数为550℃、8 h时,Ti180焊接接头具有最优的力学性能。且焊后热处理可以显著减小Ti180焊焊接接头的残余应力,在热处理温度为650℃时,接头的残余应力消除效果最佳。  相似文献   

11.
线性摩擦焊是制造航空发动机整体叶盘的关键技术. 通过光学显微镜、扫描电镜、电子式万能试验机及显微硬度仪对比分析了TC17(α + β)/TC17(β)钛合金线性摩擦焊接头焊态及不同时效温度下接头的组织与性能. 结果表明,焊态下焊合区及附近区域的微观组织为过冷β细晶,硬度最低;经焊后时效处理,析出了细小针状α相,硬度升高. 焊后时效温度为400 ℃时,焊合区及附近区域的硬度值明显提高,焊接区脆化. 焊后时效温度为630 ℃时,接头弯曲角度最高,但强度降低. 综合焊接接头的硬度、弯曲与拉伸性能优化出的焊后时效温度为550 ℃. 接头弯曲角度和抗拉强度分别达到母材的36%和95%. TC17(α + β)侧热力影响区( thermal-mechanical affected zone,TMAZ)受力后微观塑性变形更均匀,其强塑性能均优于TC17(β)侧TMAZ. 接头的弱化区对应于TC17(β)侧TMAZ硬度变化梯度及组织梯度最大的区域. 相比母材,接头的塑性损失比强度损失要大得多.  相似文献   

12.
对2219-T6铝合金激光同轴辅助搅拌摩擦焊接头的宏观形貌、力学性能及显微组织进行了研究.结果表明,激光辅助热源的加入有助于消除金属塑性流动不充分引起的隧道缺陷,提升接头性能,但激光功率过大会加剧焊缝软化而使性能下降.激光辅助热源使焊核区扩大,且焊核区中θ相(Al2Cu)增大,但对热力影响区的显微组织无明显影响.通过固溶+人工时效方法的焊后热处理以显著提升接头强度(从母材强度的76%提升100%).加入激光的焊核区及热力影响区在热处理后晶粒尺寸相比不加入激光有所减小,且激光功率越大,对应的晶粒尺寸越小.  相似文献   

13.
对304/Q235复合板进行激光填粉焊接试验,利用光学显微镜、扫描电镜、X射线衍射、材料万能试验机及电化学工作站等,对比分析了多主元高熵化CrNi2MnTi0.5Al0.5焊料及Fe基焊料所得焊接接头的微观组织、物相结构、力学性能与电化学腐蚀性能,探索了焊缝填充材料对不锈钢复合板焊缝微观组织、接头性能的影响规律。结果表明,CrNi2MnTi0.5Al0.5焊料焊缝区形成了FCC及Ti3Al颗粒的双相结构,焊缝显微硬度仅为Fe基焊料焊缝区硬度的69%~75%。两种焊接接头都有较好的抗拉强度,拉伸试样都在母材区断裂。CrNi2MnTi0.5Al0.5焊料焊缝区具有最佳的耐蚀性能,其腐蚀速率约为304不锈钢的41%。  相似文献   

14.
双相不锈钢CMT-P复合焊接微区组织特征   总被引:1,自引:0,他引:1       下载免费PDF全文
引入CMT-P复合焊接方法成功制备了成形质量优异的UNS S32750超级双相不锈钢焊接接头,选用金相显微镜、X射线衍射仪、扫描电镜、能谱仪及透射电镜等设备研究了接头不同区域的微观组织. 结果表明,焊缝、热影响区和母材组织呈现显著差异. 与母材和焊缝相比,热影响区内奥氏体含量最低(32.3%),但焊接接头各微区的奥氏体含量均满足不低于30%的标准要求.由于焊接热循环过程中再加热的作用,焊根及热影响区中析出了尺度和形貌均不同的晶粒内γ2和晶粒边界γ2,而焊缝填充区没有γ2析出.此外,焊根和热影响区均析出了短棍状Cr2N,主要分布在铁素体晶粒内和晶粒边界,Cr2N析出致使相邻铁素体基体形成了明显的贫Cr区.  相似文献   

15.
对3.5 mm厚的C18000铜合金板进行搅拌摩擦焊焊接试验. 在焊接速度120 mm/min,转速1 200 r/min工艺下获得无缺陷焊接接头. 在金相显微镜下对接头的宏观形貌、微观组织进行观察,用扫描电镜和透射电镜对母材和搅拌区组织进行观察分析. 结果表明,接头区大致分为母材区、热影响区、热力影响区和搅拌区,搅拌区晶粒细小均匀,热力影响区晶粒沿边界切线方向被拉长;搅拌区Cr3Si相部分溶解,搅拌区组织中的Cr单质相和Ni2Si相溶解导致接头硬度和抗拉强度下降. 搅拌区平均硬度为151.4 HV;接头抗拉强度为497 MPa,达到母材的72%;接头电导率下降为35%IACS.  相似文献   

16.
为了研究CO2激光-熔化极活性气体保护焊(MAG)复合焊接性能,采用CO2激光和CO2激光-MAG复合焊接590MPa级高强度钢,对其焊接接头的显微组织和力学性能进行了研究.结果表明,激光-MAG复合焊接的焊缝金属中,MAG电弧作用区主要为珠光体和贝氏体,激光作用区主要为马氏体;激光-MAG复合焊接的焊缝金属中Mo和Mn合金元素的分布具有不均匀性;激光和激光-MAG复合焊接的试件焊接接头拉伸性能完全满足要求,焊缝强度高于基体强度;激光-电弧复合焊缝金属在-60℃~+15℃试验温度范围内的冲击韧性比激光焊缝金属高;激光-MAG复合焊接焊缝金属硬度在250~400 HV之间,高于基体金属的硬度.  相似文献   

17.
利用Cu基(Cu-Cr-Co-Ni)药芯焊丝对TA1/Q235B异种金属对接与搭接接头进行了TIG焊接试验. 通过SEM、EDS和XRD对接头微观组织进行了详细分析,通过显微硬度测试了接头的硬度分布. 结果表明,采用Cu基药芯焊丝进行TA1/Q235B TIG焊接,对接和搭接均得到了无缺陷的接头. 两种接头的焊缝与母材界面处组织分布类似,其中TA1侧主要由β-Ti固溶体、FeTi和CuTi2化合物组成;Q235B侧主要由Fe,Cu基固溶体和Fe2Ti化合物组成. 对接焊缝主要由Cu基固溶体,CuTi,FeTi,Cu4Ti,τ2和τ3金属间化合物组成,而搭接焊缝主要由Cu基固溶体、τ2和Cu4Ti组成. 对接接头的平均硬度为449 HV0.1,搭接接头的平均硬度为335 HV0.1.  相似文献   

18.
选用优化的工艺参数对TC4/TC17异质钛合金进行线性摩擦焊及测温试验.焊后利用光学显微镜、扫描电镜及显微硬度仪等对接头微观组织及显微硬度进行分析.结果表明,线性摩擦焊接过程中界面温度超过1 200℃、超过β相变温度,在焊后冷却过程中发生再结晶,产生细小针状组织.界面混合区再结晶组织有等轴化甚至球化现象.TC4侧热力影响区由被拉长的α相及破碎的β相组成,TC17侧热力影响区的α相和β相被拉长细化.TC4侧热力影响区组织发生应变强化,TC17侧热力影响区靠近焊缝侧发生一定的软化现象,靠近母材侧强化现象明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号