共查询到19条相似文献,搜索用时 98 毫秒
1.
多示例多标签学习框架是一种针对解决多义性问题而提出的新型机器学习框架,在多示例多标签学习框架中,一个对象是用一组示例集合来表示,并且和一组类别标签相关联。E-MIMLSVM~+算法是多示例多标签学习框架中利用退化思想的经典分类算法,针对其无法利用无标签样本进行学习从而造成泛化能力差等问题,使用半监督支持向量机对该算法进行改进。改进后的算法可以利用少量有标签样本和大量没有标签的样本进行学习,有助于发现样本集内部隐藏的结构信息,了解样本集的真实分布情况。通过对比实验可以看出,改进后的算法有效提高了分类器的泛化性能。 相似文献
2.
在多示例学习中引入利用未标记示例的机制,能降低训练的成本并提高学习器的泛化能力。当前半监督多示例学习算法大部分是基于对包中的每一个示例进行标记,把多示例学习转化为一个单示例半监督学习问题。考虑到包的类标记由包中示例及包的结构决定,提出一种直接在包层次上进行半监督学习的多示例学习算法。通过定义多示例核,利用所有包(有标记和未标记)计算包层次的图拉普拉斯矩阵,作为优化目标中的光滑性惩罚项。在多示例核所张成的RKHS空间中寻找最优解被归结为确定一个经过未标记数据修改的多示例核函数,它能直接用在经典的核学习方法上。在实验数据集上对算法进行了测试,并和已有的算法进行了比较。实验结果表明,基于半监督多示例核的算法能够使用更少量的训练数据而达到与监督学习算法同样的精度,在有标记数据集相同的情况下利用未标记数据能有效地提高学习器的泛化能力。 相似文献
3.
多示例多标记学习(Multi-Instance Multi-Label,MIML)是一种新的机器学习框架,基于该框架上的样本由多个示例组成并且与多个类别相关联,该框架因其对多义性对象具有出色的表达能力,已成为机器学习界研究的热点.解决MIML分类问题的最直接的思路是采用退化策略,通过向多示例学习或多标记学习的退化,将MIML框架下的分类问题简化为一系列的二类分类问题进行求解.但是在退化过程中会丢失标记之间的关联信息,降低分类的准确率.针对此问题,本文提出了MIMLSVM-LOC算法,该算法将改进的MIMLSVM算法与一种局部标记相关性的方法ML-LOC相结合,在训练过程中结合标记之间的关联信息进行分类.算法首先对MIMLSVM算法中的K-medoids聚类算法进行改进,采用的混合Hausdorff距离,将每一个示例包转化为一个示例,将MIML问题进行了退化.然后采用单示例多标记的算法ML-LOC算法继续以后的分类工作.在实验中,通过与其他多示例多标记算法对比,得出本文提出的算法取得了比其他分类算法更优的分类效果. 相似文献
4.
《计算机科学与探索》2016,(1):103-111
手机游戏提供商通过在游戏中销售虚拟道具来获得收益。将游戏玩家日志数据中每个事件描述为一个示例,玩家对多种游戏道具的购买状态表示为多个标记,从而将游戏道具推荐问题抽象为多示例多标记学习问题。在此基础上,将快速多示例多标记学习算法用于手机网络游戏道具推荐,并利用半监督学习提升推荐性能。离线数据集以及实际在线手机网络游戏实验结果表明,基于多示例多标记学习的游戏道具推荐技术带来了游戏营收的显著增长。 相似文献
5.
6.
传统的机器学习主要解决单标记学习,即一个样本仅有一个标记.在生物信息学中,一个基因通常至少具有一个功能,即至少具有一个标记,与传统学习方法相比,多标记学习能更有效地识别生物相关基因组的功能.目前的研究主要集中在监督多标记学习算法.然而,研究半监督多标记学习算法,从已标记和未标记的基因表达数据中学习,仍然是未解决问题.提出一种有效的基因功能分析的半监督多标记学习算法SML_SVM.首先,SML_SVM根据PT4方法,将半监督多标记学习问题转化为半监督单标记学习问题,然后根据最大后验概率原则(MAP)和K近邻方法估计未标记样本的标记,最后,用SVM求解单标记学习问题.在yeast基因数据和genbase蛋白质数据上的实验表明,SML_SVM性能比基于PT4方法的MLSVM和自训练MLSVM更优. 相似文献
7.
传统的多标记学习是监督意义下的学习,它要求获得完整的类别标记.但是当数据规模较大且类别数目较多时,获得完整类别标记的训练样本集是非常困难的.因而,在半监督协同训练思想的框架下,提出了基于Tri-training的半监督多标记学习算法(SMLT).在学习阶段,SMLT引入一个虚拟类标记,然后针对每一对类别标记,利用协同训练机制Tri-training算法训练得到对应的分类器;在预测阶段,给定一个新的样本,将其代入上述所得的分类器中,根据类别标记得票数的多少将多标记学习问题转化为标记排序问题,并将虚拟类标记的得票数作为阈值对标记排序结果进行划分.在UCI中4个常用的多标记数据集上的对比实验表明,SMLT算法在4个评价指标上的性能大多优于其他对比算法,验证了该算法的有效性. 相似文献
8.
基于流形学习的多示例回归算法 总被引:2,自引:0,他引:2
多示例学习是一种新型机器学习框架,以往的研究主要集中在多示例分类上,最近多示例回归受到了国际机器学习界的关注.流形学习旨在获得非线性分布数据的内在结构,可以用于非线性降维.文中基于流形学习技术,提出了用于解决多示例同归问题的Mani MIL算法.该算法首先对训练包中的示例降维,利用降维结果出现坍缩的特性对多示例包进行预测.实验表明,Mani MIL算法比现有的多示例算法例如Citation-kNN等有更好的性能. 相似文献
9.
多标记学习主要用于解决单个样本同时属于多个类别的问题.传统的多标记学习通常假设训练数据集含有大量有标记的训练样本.然而在许多实际问题中,大量训练样本中通常只有少量有标记的训练样本.为了更好地利用丰富的未标记训练样本以提高分类性能,提出了一种基于正则化的归纳式半监督多标记学习方法——MASS.具体而言,MASS首先在最小化经验风险的基础上,引入两种正则项分别用于约束分类器的复杂度及要求相似样本拥有相似结构化多标记输出,然后通过交替优化技术给出快速解法.在网页分类和基因功能分析问题上的实验结果验证了MASS方法的有效性. 相似文献
10.
基于半监督多示例学习的对象图像检索 总被引:2,自引:0,他引:2
针对基于对象的图像检索问题,提出一种新的半监督多示例学习(MIL)算法.该算法将图像当作包,分割区域的视觉特征当作包中的示例,按"点密度"最大原则,提取"视觉语义"构造投影空间;然后利用定义的非线性函数将包映射成投影空间中的一个点,以获得图像的"投影特征",并采用粗糙集(RS)方法对其进行属性约简;最后利用直推式支持向量机(TSVM)进行半监督的学习,得到分类器.实验结果表明,该方法有效且性能优于其他方法. 相似文献
11.
将支持向量机与半监督学习理论相结合,提出基于支持向量机协同训练的半监督回归模型,使用两个支持向量机回归模型相互影响,协同训练。利用实验数据集进行实验,并与监督支持向量机回归模型、半监督自训练支持向量机回归模型作比较。实验结果表明,基于支持向量机协同训练的半监督回归模型在缺少标记样本的情况下,提高了回归估计的精度。 相似文献
12.
针对大多数主动学习支持向量机(ASVM)的主动学习策略只注重考察超平面附近的样本,忽略了有些距离超平面远但是支持向量的样本,而且没有考虑当前超平面是否接近实际的超平面。提出一种基于概率的主动支持向量机算法,采用一个置信因子来衡量当前的超平面接近实际的超平面的程度。实验结果都验证了该算法在分类精度与计算量方面都有了较大改进。 相似文献
13.
机器学习中的监督学习算法需要用有标记样本训练分类模型。而收集训练样本,并进行分类的过程,需要耗费大量人力物力以及时间。因此,如何高效率地完成图像分类一直是业内研究的热点。提出了一种基于霍夫森林和半监督学习的图像分类算法,能用较少的样本训练分类器,并在分类的过程中不断获取新的训练样本。并对部分训练结果加以人工标注,该方法有效提高了标注效率。利用COREL数据对该算法进行了实验验证,结果表明,该算法可以利用少量的训练样本,得到令人满意的标注精确度,提高人工效率。 相似文献
14.
为进一步提高SVM增量训练的速度,在有效保留含有重要分类信息的历史样本的基础上,对当前增量训练样本集进行了约简,提出了一种基于类边界壳向量的快速SVM增量学习算法,定义了类边界壳向量。算法中增量训练样本集由壳向量集和新增样本集构成,在每一次增量训练过程中,首先从几何角度出发求出当前训练样本集的壳向量,然后利用中心距离比值法选择出类边界壳向量后进行增量SVM训练。分别使用人工数据集和UCI标准数据库中的数据进行了实验,结果表明了方法的有效性。 相似文献
15.
传统排序算法将排序问题转换成分类或回归问题来求解,这样得到的模型不够精确。对此提出一种新的排序算法,该算法把排序问题看成一个结构化学习过程,即通过训练集来学习一个排序结构。算法首先定义了一个查询级的目标函数,针对算法约束条件太多,难以直接优化,提出使用割平面算法进行求解。对于算法中的“寻找最违约排列”子问题,将其变换成为一个简单的降序排列问题。基于基准数据集的实验表明,相比起传统的排序算法,所提算法更为有效。 相似文献
16.
提出了一种改进的SVM(支持向量机)主动学习方法,通过多次迭代提供给用户信息量最大的样本并将其加入训练集,可以大大减少人工标记样本所耗费的代价。为了评估分类器的性能,实验中对包含了五种音乐流派类别(舞曲、抒情、爵士、民乐、摇滚)的801首音乐样本进行了分类,并在分类准确率的收敛速度和达到同等准确率下需要标注的样本数目两个方面验证了提出的SVM主动学习方法的有效性。 相似文献
17.
半监督学习结合少量有标签样本和大量无标签样本,可以有效提高算法的泛化性能。传统的半监督支持向量机(SVM)算法在目标函数中引入无标签样本的依赖项来推动决策面通过低密度区域,但往往会带来高计算复杂度和局部最优解等问题。同时,半监督K-means算法面临着如何有效利用监督信息进行质心的初始化及更新等问题。针对上述问题,提出了一种结合SVM和半监督K-means的新型学习算法(SKAS)。首先,提出一种改进的半监督K-means算法,从距离度量和质心迭代两个方面进行了改进;然后,设计了一种融合算法将半监督K-means算法与SVM相结合以进一步提升算法性能。在6个UCI数据集上的实验结果表明,所提算法在其中5个数据集上的运行结果都优于当前先进的半监督SVM算法和半监督K-means算法,且拥有最高的平均准确率。 相似文献
18.
为解决传统协同过滤算法中用户评分数据稀疏性,忽视物品及用户特征,所带来的推荐质量下降的问题,提出了一种基于安全的、高置信度的半监督方法的协同过滤推荐算法,采用安全的,高置信度的半监督方法S4VM对没有评分的数据进行有效预测,同时考虑用户的行为信息以及物品及用户特征。通过对未评分数据进行预测,能够有效地缓解数据的稀疏性,从而提高寻找最近邻的准确度。实验结果表明,该算法能够有效地提高系统的推荐质量。 相似文献
19.
一个有效的核方法通常取决于选择一个合适的核函数。目前研究核方法的热点是从数据中自动地进行核学习。提出基于最优分类标准的核学习方法,这个标准类似于线性鉴别分析和核Fisher判别式。并把此算法应用于模糊支持向量机多类分类器设计上,在ORL人脸数据集和Iris数据集上的实验验证了该算法的可行性。 相似文献