首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aluminum alloy—based cast in-situ composite has been synthesized by dispersion of externally added molybdenum trioxide particles (MoO3) in molten aluminum at the processing temperature of 850 °C. During processing, the displacement reaction between molten aluminum and MoO3 particles results in formation of alumina particles in situ and also releases molybdenum into molten aluminum. A part of this molybdenum forms solid solution with aluminum and the remaining part reacts with aluminum to form intermetallic phase Mo(Al1−x Fe x )12 of different morphologies. Magnesium (Mg) is added to the melt in order to help wetting of alumina particles generated in situ, by oxidation of molten aluminum by molybdenum trioxide, and helps to retain these particles inside the melt. The mechanical properties of the cast in-situ composite, as indicated by ultimate tensile stress, yield stress, percentage elongation, and hardness, are relatively higher than those observed either in cast commercial aluminum or in cast Al-Mo alloy. The wear and friction of the resulting cast in-situ Al(Mg,Mo)-Al2O3(MoO3) composites have been investigated using a pin-on-disc wear testing machine under dry sliding conditions at different normal loads of 9.8N, 14.7N, 19.6N, 24.5N, 29.4N, 34.3N, and 39.2 N and a constant sliding speed of 1.05 m/s. The results of the current investigation indicate that the cumulative volume loss and wear rate of cast in-situ composites are significantly lower than those observed either in cast commercial aluminum or in cast Al-Mo alloy, under similar load and sliding conditions. Beyond about 30 to 35 N loads, there appears to be a higher rate of increase in the wear rate in the cast in-situ composite as well as in cast commercial aluminum and cast Al-Mo alloy. For a given normal load, the coefficient of friction of cast in-situ composite is significantly lower than those observed either in cast commercial aluminum or in cast Al-Mo alloy. The coefficient of friction of cast in-situ composite increases gradually with increasing normal load while those observed in cast commercial aluminum or in cast Al-Mo alloy remain more or less the same. Beyond a critical normal load of about 30 to 35 N, the coefficient of friction decreases with increasing normal load in all the three materials.  相似文献   

2.
Cast particulate composites, containing in-situ generated reinforcing particles of alumina, have been developed by solidification of slurry obtained by dispersion of externally added manganese dioxide particles (MnO2) in molten aluminum, and alumina is formed by reaction of manganese dioxide with molten aluminum. The chemical reaction also releases manganese into molten aluminum. Magnesium is added to the melt in order to help wetting of alumina particles by molten aluminum and to retain the particles inside the melt. The present work aims to understand the influence of key parameters such as processing temperature, time, and the amount of MnO2 particles added on the microstructure and mechanical properties of the resulting cast in-situ composites. The sequence of addition of MnO2 particles and magnesium has significant influence on the microstructure and mechanical properties. Increasing processing temperature and time increases the extent of reduction of MnO2 particles, generating more alumina particles as well as releasing more manganese to the matrix alloy. Alumina helps to nucleate finer and sometimes blocky MnAl6 in the matrix of the composite and thereby results in relatively higher ductility and increased strength in the composite as compared to the base alloy of similar composition. Even in the presence of relatively higher porosity of 8 to 9 vol pct, one observes a percent elongation not below 7 to 8 pct, which is considerably higher than those observed in cast Al(Mg)-Al2O3 composite synthesized by externally added alumina particles.  相似文献   

3.
Transition-metal trialuminide intermetallics such as Al3Zr and Al3Ti, having low densities and high elastic moduli, are good candidates for the in-situ reinforcement of light-metal matrices based on Al and Mg alloys. In this work, in-situ composites based on Al and Al-Mg matrices reinforced with an Al3Zr intermetallic were successfully processed by conventional ingot metallurgy. The microstructural studies showed that “needle” or “feathery”-like particles of Al3Zr phase, whose volume fraction increased with increasing concentration of Zr, were formed in the Al matrix in the investigated range of Zr contents from 0.9 to 11.6 at. pct. Properties of Al-Zr alloys were investigated as a function of volume fraction of Al3Zr. It is shown that the density, hardness, and yield strength of the in-situ Al/Al3Zr composites can be quite adequately described by the composite rule-of-mixtures (ROM) behavior. Alloying of a binary Al-2.4 at. pct Zr alloy with Mg up to ∼25 at. pct reduces profoundly its density and, additionally, strengthens the matrix by a Mg solid-solution strengthening mechanism.  相似文献   

4.
Solidification processing of Al-Al2O3 composites involves mixing of nonwetting alumina particles in molten aluminum alloy resulting in a slurry where the particles are often attached to bubbles sucked at the center of vortex below the stirrer. The internal surface of bubbles is eventually oxidized by oxygen from air entrapped in it. These bubble-particle combines may float or settle during casting depending on the overall density influencing the particle and porosity distribution in a cast composite ingot where the performance of a stirrer may be evaluated under a given condition of processing. Particle incorporation is more for turbine stirrers instead of flat blade stirrers, but the porosity also increases. Flotation of bubble-particle combines during casting of ingot results in higher particle content at the top. Microstructure shows clusters of particles along circular boundaries of thin oxides at the top of the ingot and sometimes at the bottom. This may be a consequence of filling of bubbles to different extents by surrounding liquid puncturing the oxide layer, if necessary, during solidification. When the manner of stirring is changed to 2 minutes of stirring of particles into molten alloy with an intermediate 2-minute period of no stirring before stirring the slurry again for 2 minutes, relatively uniform particle incorporation results along the height of cast ingot compared to that obtained by continuous stirring. This difference in particle distribution may be attributed to flotation of bubble-particle combines to release the particles on the top of the slurry when stirring ceases and its remixing into the slurry when it is stirred again. However, an increase in the intermediate period of no stirring and a higher processing temperature result in enhanced porosity and a more inhomogeneous particle distribution along the height of the ingot.  相似文献   

5.
6.
The evolution of titanium powders in the pure aluminum melt at a lower temperature was studied in our research. The process involved some titanium powders being added into the pure aluminum melt at 1003?K (730?°C), and then the melt was cast into an ingot after 5 minutes. A reaction layer composed of some loose Al3Ti particles was formed on the solid Ti surface due to the reactive diffusion between titanium and aluminum. In-situ blocky Al3Ti particles smaller than 5???m were produced in the aluminum matrix. A reaction-peeling model was suggested to illustrate the formation mechanism of Al3Ti particles, and a simple approach for fabricating in-situ Al3Ti/Al-alloy composites was proposed as well.  相似文献   

7.
Quick preheating treatment of the Al-Ti-C pellets and high-intensity ultrasonic vibration are introduced in the fabrication of in-situ TiC p /Mg composites. Al-Ti-C pellets are preheated for about 130 seconds in the furnace at 1023 K (750 °C), in which magnesium is melted as well. In this process, plenty of heat can be accumulated due to the reactive diffusion between liquid aluminum and solid titanium in Al-Ti-C, and a small amount of Al3Ti phase is formed as well. After adding the preheated Al-Ti-C into the molten magnesium, thermal explosion takes place in a few seconds. In the meantime, high-intensity ultrasonic vibration is applied into the melt to disperse in-situ formed TiC particles into the matrix and degas the melt as well. Microstructural characterization indicates that in-situ formed TiC particles are spherical in morphology and smaller than 2 μm in size. Furthermore, a homogeneous microstructure with low porosity of the magnesium composite is obtained due to the effect of ultrasonic vibration. A novel approach using the quick preheating treatment technique and high-intensity ultrasonic vibration to synthesize in-situ TiC p /Mg composites is proposed in our research.  相似文献   

8.
In this work, a reactive synthesis process is proposed to obtain ZrAl3-Al2O3 particulate-reinforced aluminum matrix composites. The process involves the in-situ formation of Al2O3 and ZrAl3 from Al-ZrO2 green compacts. Upon compact heating, it is found that reduction of ZrO2 by molten aluminum occurs at temperatures above 750 °C, leading to the development of ZrAl3 and Al2O3 phases. Thermodynamically, it is found that the reduction of zirconium oxide is driven mainly by the dissolution of Zr in molten aluminum. Because the solubility of Zr in liquid aluminum is extremely small, the formation of ZrAl3 is favored after relatively small Zr dissolutions. The first Zr-Al intermetallics to form at the lowest temperatures seem to be metastable, as infered from the measured atom ratios for Al : Zr of 2.83 : 1. At increasing temperatures, the reaction comes into completion, resulting in the formation of equilibrium intermetallic ZrAl3 phases. The results obtained from differential scanning calorimetry (DSC) indicate that by increasing the scanning rates, both the reaction temperature and the exothermic peak intensity also increase. Alternatively, it is found that by reducing the amount of ZrO2 in the green compact, the in-situ reaction temperatures also shift toward higher values.  相似文献   

9.
Al-3.7 pct Si-0.18 pct Mg foams strengthened by AlN particle dispersion were prepared by a melt foaming method, and the effect of foaming temperature on the foaming behavior was investigated. Al-3.7 pct Si-0.18 pct Mg alloy containing AlN particles was prepared by noncompressive infiltration of Al powder compacts with molten Al alloy in nitrogen atmosphere, and it was foamed at different foaming temperatures ranging from 1023 to 1173 K. The porosity of prepared foam decreases and the pore structure becomes homogeneous with increasing foaming temperature. When the foaming temperature is higher than 1123 K, homogeneous pores are formed in the prepared ingot without using oxide particles and metallic calcium granules, which are usually used for stabilizing a foaming process. This stabilization of the foaming at high temperatures is possibly caused by Al3Ti intermetallic compounds formed at high temperature and AlN particles. Compression tests for the prepared foams revealed that the absorbed energy per unit mass of prepared Al-3.7 pct Si-0.18 pct Mg foam is higher than those of aluminum foams strengthened by alloying or dispersion of reinforcements. It is remarkable that the oscillation in stress, which usually appears in strengthened aluminum foams, does not appear in the plateau stress region of the present Al-3.7 pct Si-0.18 pct Mg foam. The homogeneity in cell walls and pore morphology due to the stabilization of pore formation and growth by AlN and Al3Ti particles is a possible cause of this smooth plateau stress region.  相似文献   

10.
The composites reinforced with nanoparticles result in improved strength and ductility while those containing coarser particles of micron size have limited ductility. The present study investigates the outcome of mechanical properties in a composite reinforced simultaneously with coarse and fine particles. High energy milling of manganese dioxide particles with excess of aluminum powder ensures that nanoparticles generated, either of MnO2 or alumina, are mostly separate and surrounded by aluminum particles. The milled powder when added to aluminum alloy melt, the excess aluminum particles will melt leaving behind separate oxide nanoparticles without significant agglomeration. Different amounts of milled powder mix have been stirred into molten aluminum alloy where nanoparticles of MnO2 react with melt to form alumina. The resulting slurry is cast into composites, which also contains coarser (nearly micron size) alumina particles formed by internal oxidation of the melt during processing. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The oxide particles are primarily γ-alumina in a matrix of aluminum-magnesium-manganese alloy containing some iron picked up from the stirrer. These composites fail during tensile test by ductile fracture due to debonding of coarser particles. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably, presumably due to delay in debonding of coarser particles to higher stress because of reduced mismatch in extension caused by increased strain hardening in presence of nanoparticles in the matrix. The composites containing only coarser oxide particles show limited strength and ductility attributed to early debonding of particles at a relatively lower stress due to larger mismatch in extension between matrix and larger particles. Higher addition of powder mix beyond a limit, however, results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The present work, however, did not optimize the relative amounts of the different sized particles for achieving maximum ductility.  相似文献   

11.
Cast Mg-Al-Si composites synthesized by addition of Al-Si alloy containing 10, 15, and 20 wt pct of Si, in molten magnesium, to generate particles of Mg2Si by reaction between silicon and magnesium during stir casting has opened up the possibility to control the size of these particles. The microstructure of the cast composite consists of relatively dark polyhedral phase of Mg2Si and bright phase of β-Al12Mg17 along the boundary between dendrites of α-Mg solid solution. After hot forging at 350 °C, the microstructure has changed to relatively smaller sizes of β-Al12Mg17 and Mg2Si particles apart from larger grains surrounded by smaller grains due to dynamic recovery and recrystallization. Some of the Mg2Si particles crack during forging. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing volume fraction of Mg2Si, but the hardness is higher in forged composites by about 100 BHN. Yield strength in cast composites improves over that of the cast alloy, but there is a marginal increase in yield strength with increasing Mg2Si content. In forged composites, there is significant improvement in yield strength with increasing Mg2Si particles and also over those observed in their cast counterpart. In cast composites, ultimate tensile strength (UTS) decreases with increasing Mg2Si content possibly due to increased casting defects such as porosity and segregation, which increases with increasing Mg2Si content and may counteract the strengthening effect of Mg2Si content. However, in forged composite, UTS increases with increasing Mg2Si content until 5.25 vol pct due to elimination of segregation and lowering of porosity, but at higher Mg2Si content of 7 vol pct, UTS decreases, possibly due to extensive cracking of Mg2Si particles. On forging, the ductility decreases in forged alloy and composites possibly due to the remaining strain and the forged microstructure. The initiation fracture toughness, J IC , decreases drastically in cast composites from that of Mg-9 wt pct. alloy designated as MA alloy due to the presence Mg2Si particles. Thereafter, J IC does not appear to be very sensitive to the increasing presence of Mg2Si particles. There is drastic reduction of J IC on forging of the alloy, which was attributed to the remaining strain and forged microstructure, and it is further lowered in the composites because of cracking of Mg2Si particles. The ratio of the tearing modulus to the elastic modulus in cast composites shows a lower ratio, which decreases with increasing Mg2Si content. The ratio decreases comparatively more on forging of cast MA alloy than those observed in forged composites.  相似文献   

12.
Minor additions of Sc are effective in controlling the recrystallization resistance of 5xxx, 2xxx, and 7xxx aluminum. The addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids, which are coherent with the matrix and have the L12 structure. The presence of Al3Sc dispersoids increases the recrystallization resistance of wrought alloys. The higher coarsening rate of Al3Sc compared to that of Al3Zr may limit its applications as a single ancillary addition. When both scandium and zirconium are used in the same alloy, Al3(Sc1-x , Zr x ) dispersoids form. These dispersoids are more effective recrystallization inhibitors than either Al3Sc or Al3Zr. The Al3(Sc1-x , Zr x ) dispersoids precipitate more rapidly than Al3Zr but have a slower coarsening rate than Al3Sc. Furthermore, the distribution of Al3(Sc1-x , Zr x ) is significantly more homogeneous than Al3Zr. It was also established that alloys containing up to 3.5Mg showed improvement in recrystallization resistance when both Sc and Zr were present. Several morphologies of Al3Sc and Al3(Sc1-x , Zr x ) were also observed.  相似文献   

13.
A novel foamable aluminum alloy has been developed. It contains sub-micron-sized MgAl2O4 (spinel) particles that are generated in situ by a reaction of SiO2 with a molten Al-Mg alloy. The study involves an optimization of parameters such as Mg concentration, SiO2 particles size, and reaction time and shows that a composite containing MgAl2O4 particles as chief reinforcement in the matrix leads to effective foaming. Composites containing large sized transition phases and particle agglomerates in the matrix yield poor foam structure. The best foamable composite obtained contained 3.4 vol. pct of ultrafine (80 nm to 1 μm) MgAl2O4 particles uniformly distributed in an Al-Si alloy matrix. The corresponding metal foam contained 75 pct porosity and exhibited a uniform distribution of cells.  相似文献   

14.
Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites have been formed byin situ reaction of molten Al with aluminosilicate ceramics. This reactive metal penetration (RMP) process is driven by a strongly negative Gibbs energy for reaction. In the Al/mullite system, Al reduces mullite to produce α-Al2O3 and elemental Si. With excess Al (i.e., x > 0), a composite of α-Al2O3, Al(Si) alloy, and Si can be formed. Ceramic-metal composites containing up to 30 vol pct Al(Si) were prepared by reacting molten Al with dense, aluminosilicate ceramic preforms or by reactively hot pressing Al and mullite powder mixtures. Both reactive metal-forming techniques produce ceramic composite bodies consisting of a fine-grained alumina skeleton with an interpenetrating Al(Si) metal phase. The rigid alumina ceramic skeletal structure dominates composite physical properties such as the Young’s modulus, hardness, and the coefficient of thermal expansion, while the interpenetrating ductile Al(Si) metal phase contributes to composite fracture toughness. Microstructural analysis of composite fracture surfaces shows evidence of ductile metal failure of Al(Si) ligaments. Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites produced byin situ reaction of aluminum with mullite have improved mechanical properties and increased stiffness relative to dense mullite, and composite fracture toughness increases with increasing Al(Si) content. This article is based on a presentation made in the “In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics” symposium, held February 12–16, 1995, at the TMS Annual Meeting in Las Vegas, Nevada, under the auspices of SMD and ASM-MSD (the ASM/TMS Composites and TMS Powder Materials Committees).  相似文献   

15.
16.
An investigation of the stress-corrosion cracking (SCC) behavior of three aluminum powder alloys, containing 0.0, 0.4, and 0.8 wt pct Co, using double cantilever beam specimens has shown a significant increase in SCC resistance with increasing Co content. This resistance to cracking takes the form of both a decrease in plateau crack velocity and an increase in the threshold stress intensity factor for cracking (K ISCC ) as the Co content increases. The SCC fracture is intergranular and the crack path is tortuous because of the oxides and Co2Al9 intermetallic particles contained within the powder metallurgy alloys. We propose that the improvements in SCC resistance result from the Co2Al9 particles, which catalyze the recombination and evolution of hydrogen, thereby reducing hydrogen absorption and embrittlement. Formerly with Martin Marietta Laboratories  相似文献   

17.
Friction stir processing (FSP) was used to successfully embed galfenol particles into aluminum (AA 1100 Al) matrix uniformly. However, intermetallic layer of Al3Fe was formed around the galfenol particles. Activation energy for Al3Fe formation during FSP was estimated, and attempts were made to minimize the Al3Fe layer thickness. By changing the processing conditions, FSP successfully eliminated the intermetallic layer. Hence, FSP, in addition to microstructural control, can successfully fabricate intermetallic-free embedded regions by controlling the reaction kinetics.  相似文献   

18.
Alumina-aluminum composites can be prepared by reactive metal penetration (RMP) of mullite by aluminum. The process is driven by a strong negative free energy for the reaction (8 +x)Al + 3Al6Si2013 → 13Al2O3 + 6Si + xAl. Thermodynamic calculations reveal that titanium oxide, aluminum titanate, nickel oxide, and nickel aluminate all have a negative free energy of reaction with aluminum from 298 to 1800 K, indicating that it may be possible to form alumina-intermetallic composites by reactions of the type (2 +x)Al + (3/y) MOy → Al2O3 + AlxM3/y. Experiments revealed that aluminum reacts with titanium oxide, nickel oxide, and nickel aluminate, but not aluminum titanate, at 1673 K. Reaction with the stoichiometric amount of aluminum (x = 0) leads to the formation of alumina and either titanium or nickel. In some cases, reactions with excess aluminum (x > 0) produce intermetallic compounds such as TiAl3 and NiAl. This article is based on a presentation made in the “In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics” symposium, held February 12–16, 1995, at the TMS Annual Meeting in Las Vegas, Nevada, under the auspices of SMD and ASM-MSD (the ASM/TMS Composites and TMS Powder Materials Committees).  相似文献   

19.
Microhardness and compressive mechanical properties of the Mn-modified Ll2 titanium trialuminide containing porosities from 0.07 to 0.14 and a small volume fraction of the Al3Ti particles were studied after hydrostatic pressurization at 2 GPa. It is found that the reduction in porosity after hydrostatic pressurization (densification) increases approximately linearly with increasing initial porosity. Compressive yield strength, strength to fracture, and permanent deformation to fracture of both unpressurized and pressurized material decrease linearly with increasing actual volume fraction of porosity. At the same level of actual porosity, the compressive yield strength of the hydrostatically pressurized Ll2 titanium trialuminide is always higher and its permanent deformation to fracture is always lower than that of the unpressurized titanium trialuminide. Such a behavior indicates that the pressure-induced dislocations generated at elastic discontinuities such as pores and the Al3Ti particles become immobilized. This, in turn, leads to a quick work hardening. The behavior of compressive yield strength of the hydrostatically pressurized Ll2 titanium trialuminide is opposite to that observed for a B2 NiAl intermetallic hydrostatically pressurized to 1.4 GPa and subsequently compressive and tensile tested by Margevicius and Lewandowski. This difference is discussed in terms of different crystallographic structure of titanium trialuminides (Ll2) and NiAl (B2).  相似文献   

20.
The coupled phenomena of momentum, heat, and mass transfer were simulated in order to predict and to better understand the generation and movement of intermetallic dross particles within certain regions of a typical galvanizing bath. Solutions for the temperature and aluminum concentration can be correlated with the solubility limits of aluminum (Al) and iron (Fe) to determine the amount of precipitated aluminum in the form of Fe2Al5 top dross. Software developed by the Industrial Materials Institute of the National Research Council of Canada (IMI-NRC), including k-ε turbulence modeling for heat and mass transfer, was adapted for the simulation of a sequence of operating parameters. Each case was modeled over a period of 1 hour, taking into account an ingot-melting period followed by a nonmelting period. The presence of an ingot significantly changes the temperature distribution and also results in important variations in the local aluminum concentration, since the makeup ingot has a higher aluminum concentration. The simulation showed that during the ingot melting, the total aluminum concentration is higher at the ingot side of the bath than at the strip exit side. The region below the ingot presents the highest aluminum concentration, whereas lower aluminum concentrations were found in the region above the sink roll, between the strip and the free surface. It was shown that precipitates form near the ingot surface because this region is surrounded by a solution at 420 °C, which is lower than the average bath temperature of 460 °C. When no ingot is present, the total aluminum concentration becomes much more uniform and decreases with time at a constant rate, depending on the coating thickness. This information is of major significance in the prediction of the formation of dross particles, which can cause defects on the coated product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号