首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
罗小兵  苏航  杨才福  柴锋  袁晓敏 《焊接学报》2010,31(10):57-60,64
采用焊接热模拟的方法研究了Mn元素含量对EH36船板钢焊接粗晶区组织与性能的影响.结果表明,Mn含量对EH36钢大热输入焊接粗晶区的低温韧性存在显著影响.Mn元素含量较高(1.58%)或较低(0.56%)时,粗晶区的低温韧性均差.当Mn含量等于1.20%时粗晶区的低温韧性最高.Mn含量对EH36钢大热输入焊接粗晶区的组织同样存在显著影响.Mn含量较低(0.56%)时,粗晶区的主要组织为粗大的先共析铁素体,其宽度约为30μm;而Mn含量较高(1.58%)时,粗晶区组织则以硬质相M-A岛状组织为主.先共析铁素体和硬质相M-A岛状组织共同决定着船板钢焊接粗晶区的韧性.  相似文献   

2.
研究了储罐用610 MPa级大热输入高强度钢板采用气电立焊和埋弧横焊焊接对接接头的组织及性能.结果表明,焊接对接接头的拉伸强度、低温冲击和冷弯性能优良,性能指标富余量大,淬硬倾向小,钢板完全可以应用于10万立方米及以上大型石油储罐的建造.储罐用610 MPa级大热输入高强度钢板焊接热影响粗晶区组织比母材组织有所粗化,以板条贝氏体和粒状贝氏体为主,基体和晶界存在少量形状较为圆滑的M-A岛.钢板中存在大量的TiN粒子有效钉扎奥氏体晶界和促进铁素体晶内形核,抑制了焊接热影响区组织粗化和先共析铁素体、粗大M-A岛的形成,是保证610 MPa大热输入高强钢焊接性能的关键.  相似文献   

3.
焊接热输入对T92/S30432异种钢焊接接头组织和性能的影响   总被引:1,自引:0,他引:1  
研究了焊接热输入对T92/S30432异种钢接头各区域的显微组织以及接头力学性能的影响。结果表明:T92/S30432异种钢接头焊缝为粗大树枝晶组织,T92侧热影响区(HAZ)主要由粗晶区及细晶区构成,粗晶区内部观察到块状的铁素体;S34032侧HAZ没有明显分区,但存在明显的晶粒长大和晶界粗化。随着焊接热输入增大,焊缝金属、T92侧的粗晶区和S30432侧的HAZ组织发生粗化,T92侧粗晶区内部的铁素体的含量和尺寸也增大;小焊接热输入可以提高焊缝金属和T92侧HAZ的冲击功;大焊接热输入可以一定程度上改善焊接接头的强度。因此,适宜采用的小焊接热输入制备T92/S30432异种钢接头。  相似文献   

4.
研究了焊接热输入对SCW550/Q345B异种钢焊接接头组织及性能的影响。结果表明:随着焊接热输入的增大,热影响区粗晶区先共析铁素体和侧板条铁素体含量增加,降低接头韧性;奥氏体晶粒、魏氏体的数量随焊接热输入的增加而增大,从而导致接头脆性增加。因此,应采用较小的焊接热输入进行SCW550/Q345B异种钢接头焊接。  相似文献   

5.
1Cr22Mn16N高氮钢的激光焊接Ⅲ.焊接热影响区组织和性能   总被引:1,自引:0,他引:1  
赵琳  田志凌  彭云  许良红  李冉 《焊接学报》2007,28(12):26-30
利用热模拟技术,对高氮钢激光焊接热影响区(HAZ)的组织和性能进行了研究。结果表明,高氮钢焊接热影响区组织为奥氏体和δ-铁素体。随着焊接冷却速度的增大,高氮钢粗晶区的显微硬度增大;随着焊接峰值温度降低,热影响区显微硬度逐渐减小。焊接热影响区显微硬度均高于母材,没有出现软化区。随着冷却速度的增大,热影响区粗晶区的冲击吸收功先上升然后降低,而整个热影响区出现了两处脆化区。  相似文献   

6.
采用Gleeble-3800焊接热模拟机模拟研究了含铜时效钢焊接粗晶区的组织转变规律,测定了SHCCT 曲线,分析研究了冷却速度对其组织形貌、晶粒度和硬度的影响规律.结果表明,冷却速度较快时(t8/5<15 s),含铜钢的焊接粗晶区组织以板条贝氏体为主,晶粒尺寸相对较小,硬度较高;冷却速度较慢时(t8/5>40 s),焊接粗晶区的组织主要由粒状贝氏体构成,原始奥氏体晶粒尺寸粗大,同时在铁素体基体上分布着较多大尺寸的M-A岛,M-A岛的形成导致焊接粗晶区的低温韧性严重恶化.  相似文献   

7.
探究了道间温度和焊接道数对自保护药芯焊丝熔敷金属组织和韧性的影响。结果表明,随着道间温度的提高,组织中的先共析铁素体增多,M-A岛内的奥氏体先增多而后又转变为碳化物,这使得冲击吸收能量先增大后减小。随着焊接道数的增加,冲击吸收能量增大,这主要是由于组织中M-A岛的尺寸和含量都减小,细晶区所占的比例增大造成的。  相似文献   

8.
EH40钢板模拟焊接热影响区组织与性能   总被引:1,自引:0,他引:1  
利用热模拟技术及光学显微镜、透射电镜研究了在不同冷却时间(t8/5)条件下,大能量焊接EH40钢板模拟焊接热影响区组织和性能的变化规律.试验结果表明,模拟焊接热影响区组织主要是由粒状贝氏体、铁素体和珠光体组成;随着t8/5时间的增加,焊接热影响区的组织由粒状贝氏体和少量的准多边形铁素体组成转变为以粗大的等轴铁素体和珠光体为主,同时M-A岛的数量先增多后减少,尺寸逐渐增大,形状也由块状变为长条状,大颗粒状的M-A岛极易引起脆性解理断裂,导致冲击韧性下降;模拟焊接热影响区的冲击韧性总体水平较高,随着冷却时间(t8/5)的增加,韧性呈现出先降低后升高再降低的趋势.  相似文献   

9.
采用熔化极气体保护焊对电力结构用Q460钢进行不同热输入的对接焊试验。利用金相显微镜、透射电镜和电子背散射衍射技术研究热输入对焊缝组织及冲击性能的影响。结果表明:3种热输入焊缝金属组织均为先共析铁素体、侧板条铁素体和针状铁素体及M-A组元。随着热输入的增加,焊缝组织中板条粗化,而先共析铁素体和侧板条铁素体增多,针状铁素体减少,M-A组元尺寸增大;焊缝金属中大角度晶界含量逐渐减少分别为0.54、0.40和0.37。尺寸较大的M-A组元及大角度晶界密度的降低是导致焊缝金属冲击吸收能量逐渐降低的主要原因。  相似文献   

10.
大线能量焊接DH36钢焊接热影响区组织与性能研究   总被引:1,自引:0,他引:1  
利用双丝埋弧焊接试验,对比分析了传统DH36钢和大线能量焊接DH36船板钢焊接热影响区的组织与性能。结果表明,利用新型的Ti处理技术生产的大线能量DH36钢母材具有良好的强韧性和大线能量焊接性。经大线能量(100 kJ/cm)焊接后,传统DH36钢焊接热影响区低温韧性显著降低,不能满足指标要求(34 J)。大线能量DH36船板钢在50 kJ/cm和100 kJ/cm热输入焊接时均表现出良好的低温韧性,-20℃冲击功大于100 J。同传统的DH36钢相比,大线能量DH36钢焊接接头出现了软化区,但接头强度并未显著下降。总体上大线能量焊接DH36钢优越性在于:大线能量焊接时,焊接热影响区主要得到大量交错排列的晶内针状铁素体组织,热影响区硬度降低,低温韧性显著提高。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号