首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical syntheses of polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) were achieved on 3102 aluminum alloy (Al) from 0.1 M monomer (pyrrole:o-anisidine, 8:2) containing 0.4 M oxalic acid solution using the cyclic voltammetry technique. The synthesized films were characterized by FT-IR spectroscopy. The thermal stability of films was determined by thermogravimetric analysis (TGA) technique. Surface morphologies were characterized by scanning electron microscope (SEM) images. The potential of zero charge (pzc) of Al was determined using electrochemical impedance spectroscopy (EIS). The corrosion behavior of samples was investigated with open circuit potential (Eocp)–time, EIS, and anodic polarization techniques. It was found that copolymer coated Al provides better barrier property against of corrosion in 3.5% NaCl solution.  相似文献   

2.
Newly developed low-temperature nitride synthesis route was used to introduce interstitial nitrogen into the passive layer of as-received and as-polished 316L stainless steel. The new thermochemical route is based on treating the stainless steel samples in potassium nitrate melt in an ultra pure nitrogen atmosphere at 450 °C. Electrochemical impedance spectroscopy (EIS) and dc polarization measurements have been used to evaluate the nitride layer performance in 3.5% NaCl solution. Results showed a marked increase in the corrosion resistance of nitrided stainless steel even after maintaining two weeks in NaCl solution. The effect of the treatment temperature was also studied. Data showed that the as-polished samples nitrided at 450 °C have the highest corrosion resistance. The polarization resistance (Rp) for the as-polished and as-received blank stainless steel samples was estimated by EIS were approximately 4.0 × 104 Ω cm2 and 2.0 × 104 Ω cm2, respectively. The Rp increased by a factor of 2.5–5 for the nitrided samples. Increasing the nitriding temperature from 450 to 600 °C affects negatively the corrosion resistance of stainless steel in NaCl solution. The Rp of the samples nitrided at 600 °C decreased sharply being almost 1/30 of the Rp of the samples nitrided at 450 °C. Linear polarization measurements showed that the lowest corrosion rates and highest polarization resistances obtained from the as-polished nitrided samples at 450 °C. It has been found from the potentiodynamic measurements that the Ecorr of the as-polished nitrided samples at 450 °C is nobler than that measured from the other groups. The surface morphology was analysed by optical microscope and SEM-EDS under different nitriding conditions.  相似文献   

3.
Extrusion is used in processing of Al alloy for consolidation, redistribution of reinforcements, and shape forming. The important parameter that controls the extrusion process is extrusion rate, which is a function of extrusion equipment and parameters. Homogenized AA6063 alloy billets were extruded at different ram speeds related to extrusion speed (3, 6, 10 mm s−1) and then aged at 185 °C for 6 h. The extruded samples were studied for their corrosion, microstructure, and mechanical properties. The effects of extrusion speed and aging on the corrosion behavior of AA6063 were investigated using dynamic polarization and impedance techniques in 0.5 M NaCl aqueous solution. The surface structures were then characterized by means of surface profilometer. The electrochemical measurements showed that the decreasing ram speed for the aged sample improved the corrosion resistance. In addition, the aging improved the corrosion resistance of aluminum in 0.5 NaCl environments.  相似文献   

4.
Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (Icorr) with Rct increasing two orders of magnitude of 16,500 Ω·cm2 compared to that obtained for blank of 485 Ω·cm2.  相似文献   

5.
This paper is concerned with the surface modification of a cobalt alloy (Endocast) by sodium-ion implantation and with the effect of this modification on its corrosion resistance. The Na ions were implanted at doses of 1×1017 and 2×1017 ions/cm2 at energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 °C. Prior to the measurements, the samples were exposed to the test conditions for 13 h to allow the corrosion potential Ecorr to stabilize, and for 181, 733 and 2200 h to investigate how the long-time exposures affect the corrosion resistance. The surfaces of the samples were examined by optical microscopy and by SEM-EDS. The TEM results indicate that the surface layers formed during the Na-implantation are amorphous. The results of the electrochemical examinations obtained for the Na-implanted Endocast samples indicate that the corrosion resistance of the alloy is reduced.  相似文献   

6.
Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {1 2 2} phase at pH 5.  相似文献   

7.
The corrosion protection from sulfuric acid anodized coatings on 2024 aluminum and SiC particle reinforced 2024 aluminum metal matrix composite (SiCp/2024Al MMC) in 3.5 wt.% NaCl aqueous solution was investigated using electrochemical methods. The results show that the anodized coating on 2024Al provides good corrosion protection to 3.5 wt.% NaCl, and the anodized coating on the SiCp/2024Al MMC provides some corrosion protection, but it is not as effective as for 2024Al because non-uniformity in thickness and cavities present are associated with the SiC particulates. Cavities above SiC particles are the reason that the anodized coating on the MMC cannot be completely sealed by hot water as with anodic Al alloy. SiC particle anodizes at a significantly reduced rate compared with the adjacent Al matrix. This gives rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. It was found that the barrier layer of anodized Al MMC is not continuous, and it is composed primarily of the barrier layer of anodized Al matrix and a barrier-type SiO2 film on occluded SiC particles in the coating. A new formation mechanism of coating growth during anodizing of a SiCp/2024Al MMC was proposed.  相似文献   

8.
In the present study, the effect of hydrofluoric acid (HF) treatment on the surface composition and corrosion behaviour of the magnesium alloy AZ 31 was investigated. The HF treatment of the samples was performed with various concentrations and at different treatment times. The samples surfaces were analysed by Fourier transform infrared spectroscopy, optical emission spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed the formation of hydroxides, oxides and compounds of the general formula Mg(OH)xF2 − x on the samples surfaces, as well as variations on impurities concentrations. The process led to distinct surfaces, each having its specific corrosion resistance, which was evaluated by electrochemical impedance spectroscopy and potentio-dynamic polarization. The most improved corrosion protection was achieved using the concentrations of 14 and 20 mol L− 1 and 24 h of treatment time, resulting in corrosion rates 20 times lower than those of untreated samples. These two solutions also resulted in an improved corrosion protection for further polymeric coatings, showing that this treatment is an excellent pre-treatment for corrosion protective layers on magnesium alloys.  相似文献   

9.
Ni-P-carbon nanotube (CNT) composite coatings were fabricated successfully from a suspension of CNT in an electroless bath. The microhardness and corrosion behavior of the composite coatings were investigated. The electrochemical properties of the composite coatings were studied using electrochemical workstation system. The corrosion behavior of the amorphous Ni-P-CNT composite coatings was evaluated by polarization curves and electrochemical impedance spectroscopy in 0.1 mol/l NaCl solution at room temperature. It was noted that the amorphous Ni-P-CNT composite coatings provided higher corrosion resistance than the amorphous Ni-P coating. The mechanism of improvement of the electrochemical properties of the electroless composite coatings was also discussed.  相似文献   

10.
The corrosion behaviour of the sol–gel coatings doped with cerium chloride or cerium nitrate on 2024-T3 aluminum alloy was investigated by using electrochemical impedance spectroscopy (EIS) and immersion tests. The sol–gel matrix was obtained through hydrolysis, condensation of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS), using diethylentriamine as curing agent. The results indicated that cerium nitrate with concentration of 1 × 10−3 mol L−1 in the silane solution was excellent on self-healing for the sol–gel coating, while cerium chloride had no obvious effect. This result suggested that the introduction of Cl promoted the under-film pitting of 2024-T3 substrate. It was found that Ce(OH)3 and Ce(OH)22+ simultaneously existed in the silane solution by X-ray diffraction (XRD) analysis. Ce(OH)22+ transformed to CeO2 due to high-temperature curing of sol–gel matrix demonstrated by X-ray photoelectron spectroscopy (XPS) analysis. Therefore, it can be considered that Ce(OH)3 and CeO2 played inhibition roles in the corrosion process of the sol–gel coatings.  相似文献   

11.
Commercially available carbon-based thin films consisting of single layers of amorphous diamond-like carbon or multilayers of crystalline TiAlN or CrN with diamond-like carbon top coatings were evaluated in relation to their electrochemical corrosion behavior in chloride ions containing electrolytes. The hardened working steel (an alloy of 0.9% C, 4.1% Cr, 4.9% Mo, 1.8% V, 6.4% W) was used as a substrate material.The potentiodynamic corrosion behavior of coated samples was tested in 3.5 wt.% NaCl solution and Hank's balanced body solution, HBBS (0.89 wt.% NaCl, further chlorides, sulfates, carbonates and phosphates). The multi-layers TiAlN + a-C:H:W and CrN + a-C:H:W exhibited only a minor improvement in corrosion resistance. Single layers of amorphous diamond-like carbon coating without hydrogen (a-C) spall off during the corrosion tests in chloride containing media. A minor improvement of the corrosion resistance is possible. The a-C:H and the a-C:H:Si, which contain hydrogen, showed the best corrosion resistance with a 100 times lower corrosion current density.  相似文献   

12.
Potassium silicate was deposited on AA2024 aluminum alloy as environmentally friendly conversion coatings and its corrosion behavior were examined by means of electrochemical impedance spectroscopy, potentiodynamic polarization and surfaces techniques. Potentiodynamic polarization curves show significant decrease in corrosion current density of silicate coated aluminum in NaCl solution. The corrosion resistance was increased with increasing silicate concentration of coating baths. The results indicated that the coating applied from 3 molar silicate baths is more uniform and continuous. The X‐ray diffraction (XRD) and energy discharge spectroscopy (EDS) spectra confirm the existence of silicate film on the AA2024 surface. The coating performance was evaluated in acidic and basic NaCl solution and the results show the stability of silicate conversion coating in these solutions.  相似文献   

13.
The AISI 420 martensitic stainless steel was surface-hardened by a pulsed Nd:YAG laser. The influences of process parameters (laser pulse energy, duration time and travel speed) on the depth and hardness of laser treated area and its corrosion behavior were Investigated. In the optimum process parameters, maximum hardness (490 VHN) in the laser surface treated area was achieved. The pitting corrosion behavior was studied by potentiodynamic polarization technique in 3.5% NaCl solution at 25 °C. Metallographical and electrochemical corrosion studies illustrated beneficial effects of laser surface hardening by refining the microstructure and enhancing the pitting corrosion resistance of the martensitic stainless steel. The pitting corrosion resistance of laser surface treated samples in 3.5% NaCl solution depends on the overlap ratio clearly. The pitting potential (Epp) decreased significantly by increasing the ratio of pulse overlapping.  相似文献   

14.
In this study, Ni50Al50 − xCrx nanocrystalline intermetallic compound was synthesized by using the high energy mechanical milling of pure Ni, Al and Cr elemental powders for 16 h. The morphological investigation was done by using the optical and scanning electron microscope. The corrosion behavior of the samples was studied by using the electrochemical impedance spectroscopy in 3.5% NaCl solution. The results showed that when the micro-alloying Cr content is increased, the particles distribution is modified and the size of particles is decreased. Therefore the passive film which is formed on the surface of samples is less porous, so the corrosion resistance is increased.  相似文献   

15.
In this work, Cr4Mo4V steel was irradiated by high energy current pulsed electron beam (HCPEB) with energy density of 6 J/cm2. Morphology and phase composition of the surface layer were analyzed using scanning electron microscopy (SEM) and glancing angle X-ray diffraction (GXRD). The crater-like morphology was observed on surface after HCPEB treatment, and the thickness of melted layer was ∼7 μm. Results from GXRD revealed that HCPEB treatment could suppress martensite transition and the content of retained austenite in the melted layer increased with irradiation number. The corrosion resistance was evaluated by electrochemical polarization tests in neutral 3.5% NaCl solution. Compared with the untreated Cr4Mo4V steel, corrosion potential of the samples treated by HCPEB improved and the corrosion current density decreased. The improved corrosion resistance is attributed to the absence of the carbide, formation of retained austenite and dissolution of alloy elements, particularly of Cr and Mo, into the matrix.  相似文献   

16.
A sensitive and selective molecularly imprinted electrochemical sensor for p-nitrophenol detection has been developed based on ZnO nanoparticles/multiwall carbon nanotubes (MWNTs)-chitosan (CTS) nanocomposite. This nanocomposite was dripped onto an indium tin oxide electrode and then imprinted sol-gel solution was electrodeposited onto the modified electrode to construct the proposed sensor. The morphologies and electrochemical behaviors of the imprinted sensor were characterized by scanning electron microscope, X-ray diffraction, electrochemical impedance spectroscopy, square wave voltammetry and cyclic voltammetry. The imprinted sensor displayed excellent selectivity towards the target molecule p-nitrophenol. Meanwhile, the introduced nanocomposite increased surface area and active sites for electron transfer, thus remarkably enhancing the sensitivity of the imprinted sensor. Under optimal conditions, the peak current was linear to p-nitrophenol concentration ranging from 1.0 × 10− 8 to 2.0 × 10− 4 mol·L− 1 with a detection limits of 1.0 × 10− 9 mol·L− 1 (S/N = 3). This proposed sensor was applied to the detection of p-nitrophenol in various water samples successfully.  相似文献   

17.
Corrosion inhibition effect of rhodanine-N-acetic acid (R-NA) on mild steel (MS) corrosion in 0.1 M HCl solution was investigated. For this purpose, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) as well as hydrogen gas evolution (VH2t) and the change of open circuit potential as a function of immersion time (Eocp − t) were used. The MS surfaces exposed to 0.1 M HCl solution in the absence and presence of inhibitor were examined by scanning electron microscopy (SEM). The thermodynamic parameters of adsorption were calculated and discussed. In order to gain more information about the adsorption mechanism, the EIS technique was used to evaluate the potential of zero charge (PZC) and a mechanism of adsorption process was proposed. It was found that, R-NA is a good corrosion inhibitor for the MS corrosion in 0.1 M HCl solution. The inhibition efficiency increased with increasing inhibitor concentration and reached 98% at 1.0 × 10−2 M R-NA. The high inhibition efficiency was related to adsorption of R-NA on steel surface. Surface SEM images showed a good surface coverage of inhibitor on the metal surface.  相似文献   

18.
Organosilicon film and SiOx-like film are deposited on titanium alloy (Ti6Al4V) surfaces by atmospheric pressure (~ 105 Pa) dielectric barrier discharge to improve its corrosion resistance in Hanks solution. Hexamethyldisiloxane (HMDSO) is used to be the chemical precursor. The organosilicon film deposited in Ar/HMDSO system has high growth rate (75 nm/min) and low surface roughness (3 nm), while the SiOx-like film deposited in Ar/O2/HMDSO system has lower growth rate (35 nm/min) and slightly higher surface roughness (9 nm). The potentiodynamic polarization tests show that both the two siloxane films coated Ti6Al4V samples have more positive corrosion potential and one order of magnitude lower corrosion current density than the substrate, indicating the corrosion resistance of Ti6Al4V can be improved by depositing siloxane film on its surface. In particular, as the surface is more compact and cross-linked, the SiOx-like film has better corrosion resistance than the organosilicon film.  相似文献   

19.
A tri-functional polyhedral oligomeric silsesquioxane (POSS) based silane precursor RxRyRz(SiO3/2)n (x + y + z = n = 6, 8, 10, ….) bearing 3-(N-(3-triethoxysilylpropyl)ureido)propyl, isooctyl and perfluoropropyl groups was synthesized and investigated as corrosion protective coating for AA 2024 alloy. Infrared reflection-absorption (IR RA) combined with X-ray photoelectron spectroscopy and atomic force microscopy provided information about partial self-assembling of coatings having a fluorine enriched upper layer with a low surface energy (γtot = 12.37 mN/m). The structural changes that accompanied corrosion produced under chronocoulometrical conditions were assessed from ex-situ IR RA spectra. A new band at 1690-1700 cm− 1 appeared above the corrosion potential, and was assigned to the formation of amidonium ions and consequent relaxation of urea-urea associations.  相似文献   

20.
F. Mansfeld  F. J. P  rez 《Thin solid films》1995,270(1-2):417-421
A process for surface modification of A16061-T6 has been carried out in molten salts containing Ce such as a NaCl---SnCl2---CeCl3 melt at 200 °C. Samples treated in molten salts for 2 h were subsequently exposed to a NaCl solution for 30 days to evaluate resistance against pitting corrosion. The coating mechanism in molten salts and the pitting corrosion behavior of the coated material have been studied by electrochemical impedance spectroscopy. The results show that this coating technique enhances the pitting corrosion resistance of aluminum alloys in contact with sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号