首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 10 N·m dead weight torque standard machine (10-N·m-DWTSM) has been under development at NMIJ/AIST since 2006 to expand the range of the torque standard. Estimation of the sensitivity limit of the fulcrum is one of the most important issues to realize a precise reference torque of small capacity by using a dead weight torque standard machine. In this study, a torque transducer was installed on the 10-N·m-DWTSM in order to keep the moment-arm on the horizontal line (balancing). The sensitivity limit of the fulcrum under real calibration conditions was estimated by reading the change in the output from the torque measuring device (TMD: the torque transducer with a cable and an indicating device) when small weights were loaded or unloaded. The small weights used in the experiment were 0.5 mg, 1 mg, 10 mg, and 100 mg. Equivalent radial loads from 0.1 N·m to 10 N·m were imposed on the fulcrum during the sensitivity measurement.  相似文献   

2.
A 10N·m dead weight torque standard machine (10-N·m-DWTSM) has been developed and evaluated since 2006 at the National Metrology Institute of Japan (NMIJ), a part of the National Institute of Advanced Industrial Science and Technology (AIST). Previously, the lengths of a moment arm, made of a low-thermal-expansion alloy (Super Invar), and the sensitivity limit of the fulcrum were evaluated. However, it is known that mechanical parts made of Super Invar vary in size with time. Therefore, the sensitivity limit of the fulcrum should be investigated under real calibration conditions. In this study, the moment arm lengths and the sensitivity limit of the fulcrum were re-evaluated. The moment arm lengths were found to have increased by an average of 6.3 μm in five years. The relative combined standard uncertainty of the moment arm length, warm, was re-evaluated in consideration of the uncertainty of the secular length change and was found to be 1.8 × 10−5. The sensitivity limit of the fulcrum was investigated by using a highly accurate, small-rated-capacity torque measuring device. The relative combined standard uncertainty due to the sensitivity limit of the fulcrum was 2.5 × 10−5 in the 0.1–10N·m torque range. The uncertainty budget table of the 10-N·m-DWTSM was completed. The relative expanded uncertainty of torque realized by the 10-N·m-DWTSM, Wtsm, was evaluated in the 0.1–10N·m torque range and was found to be 6.6 × 10−5, with a coverage factor, k, being equal to 2. In addition, the 10-N·m-DWTSM was compared with the existing 1-kN·m-DWTSM at NMIJ by using small-rated-capacity torque measuring devices at 5N·m and 10N·m torque steps. Two loading conditions were adopted in this comparison. The comparison results showed good agreement within the uncertainties in all cases. Thus, the torque realized by the 10-N·m-DWTSM was shown to be equivalent to that achieved by the 1-kN·m-DWTSM.  相似文献   

3.
The reference torque wrench (RTW) calibration service within the range from 5 N m to 1 kN m has been provided to industry by the National Metrology Institute of Japan (NMIJ) in the National Institute of Advanced Industrial Science and Technology (AIST). Reflecting the strong demand from Japanese industry, the calibration range was extended to 5 kN m. First, a high-precision torque transducer in the form of a torque wrench with a rated capacity of 5 kN m was developed in order to establish a calibration method for such a large RTW. Second, the calibration method was investigated using a deadweight type torque standard machine with a rated capacity of 20 kN m as a reference standard. Aimed expanded calibration range is from 200 N m to 5 kN m. As a result of calibration experiment using three transducers having different rated capacities, a relative expanded uncertainty of less than 7.0 × 10−5 could be obtained at a certain calibration point in the best case.  相似文献   

4.
In this paper, the application of ball burnishing as a new surface treatment process for polymers is investigated. The polymers used were polyoxymethylene (POM) and polyurethane (PUR). The lowest surface roughness value achieved for POM was 0.44 μm (45% decrease) and for PUR was 0.46 μm (42% decrease). The lowest coefficient of friction value achieved was 0.22 (32.9% decrease) for POM and 0.24 (28.8% decrease) for PUR. The lowest specific wear rate value achieved was 0.31×10−6 mm3/N m (38.6% decrease) for POM and 0.41×10−6 mm3/N m (37.9% decrease) for PUR.  相似文献   

5.
An automated measuring system has been developed to improve the calibration of high value standard resistors in the meg-ohm range at the National Institute for Standards (NIS), Egypt. This system is suitable for the calibration of the standard resistors from 100 kΩ to 100 MΩ using the DMM-based method by the substitution technique where the unknown resistor and the standard resistor are indirectly compared in the same position using a dummy resistor as a short-term reference standard. The system operation is automatically controlled by using a Lab VIEW program which is especially developed for this purpose. The uncertainty for the high value standard resistors measurement of this system is estimated. The performance of this system is also evaluated by comparing the measurement results obtained from this technique with those obtained by the direct comparison DMM-based method. It is found that the measurement uncertainty of with this method spans from 4.1 × 10−6 to 27 × 10−6, while it spans from 40 × 10−6 to 110 × 10−6 for the direct comparison method. The relative differences of the deviation from nominal values of the working standards resistors measured by the two methods are found to be within their expanded uncertainties.  相似文献   

6.
Aluminium bronze, well known for its good sliding properties, is frequently applied as tool material in sheet metal forming (SMF) of stainless steel, e.g. for the production of washing, refrigeration and cooking equipment. The limited hardness of the material makes it, however, sensitive to tool wear that is: volumetric wear of the tool due to sliding contact with the sheet material. Conventional wear tests like the rubber wheel abrasion test or the Taber abrader test cannot be used to simulate the interaction of the tooling with lubricated sheet material. Dedicated tribo tests are therefore conducted with the slider-on-sheet test. The aim of the research is to measure the specific wear rate of aluminium bronze at SMF-like conditions. Experimental results showed a pronounced influence of lubricant selection and sheet material selection. The measured specific wear rate varied from 10−8 mm3/N m for a smooth stainless steel sheet quality to 10−6 mm3/N m for a rough surface quality.  相似文献   

7.
We present calibration results of commercial AFM cantilevers using the KRISS nanoforce calibrator (NFC) that can determine traceably spring constants with an uncertainty better than 1%, along with the results obtained from other four calibration methods: the dimensional method, the cantilever-on-cantilever method, the Sader method, and the thermal noise method. Two types (contact and tapping mode) of beam-shaped AFM cantilevers with nominal spring constants of 0.9 N m−1 and 42 N m−1, respectively, were investigated in this study. Because of its small uncertainty, the NFC method was used to assess the uncertainties of other four methods through comparisons between values obtained from other methods and those from the NFC method for the same cantilever. Results from other methods were generally in good agreement with those from the NFC method within the uncertainties of other methods claimed in other literatures, but values obtained from the Sader method were differed by up to 40% from the NFC values, which is 2 times worse than the known uncertainty.  相似文献   

8.
《Measurement》2007,40(7-8):797-802
A deadweight-type torque standard machine of 20 kN m rated capacity (20 kN m-DWTSM) has been designed and developed by the National Metrology Institute of Japan (NMIJ) at the National Institute of Advanced Industrial Science and Technology (AIST). Each uncertainty contribution comes mainly from the performance of each mechanical part of the 20 kN m-DWTSM. Authors evaluated the uncertainty of the mass of the linkage weights, local acceleration of gravity, influence of air buoyancy on deadweight loading, initial moment-arm length (including CMM measurement and temperature compensation), and sensitivity of the fulcrum. This report deals especially with evaluation of the remaining contributions, namely the influence of arm flexure and reference line variation at the end of the moment-arm on best measurement capability (BMC). Estimation of BMC in the 20 kN m-DWTSM gave a relative expanded uncertainty of less than 7.0 · 10−5 (k = 2) for the calibration range from 200 N m to 20 kN m.  相似文献   

9.
An evaluation technique and traceability for a DC-resistive high-voltage divider was established based on 1 kV, which was traceable to a Josephson voltage standard at the Korea Research Institute of Standards and Science. To do this, the binary step-up method was used to evaluate the voltage-dividing ratio and the voltage coefficient of the divider up to 100 kV. The expanded relative uncertainty for the dividing ratio up to 100 kV was 16 × 10−6 level. To confirm the validity of the method, the ratio at 1 kV was compared with the resistance ratio of the divider, and the two results agreed to within 5.3 × 10−6.  相似文献   

10.
Cancer mortality risk were estimated due to external exposure to 40K in soil. Uncertainty estimation was performed for the risk considered as a measurand. It was presented uncertainty estimation using two methods. One method is based on the Guide to the Expression of Uncertainty in Measurement Framework (GUF) and other represents Monte Carlo method. For the Monte Carlo method, the mean of the obtained distribution that represents mortality cancer risk estimation, due to one year exposure to 40K with mean activity concentration of 708 Bq/kg in soil, is 12.9 × 10−6 with 90% confidential interval (k ≈ 1.64) of (4.7–25.5) × 10−6. According to GUF the mean value is estimated as 10.9 × 10−6, with 90% confidential interval of (0.9–20.8) × 10−6. Uncertainty of assessed risk obtained by numerical simulation is slightly different with asymmetrical boundaries related to the mean value, comparing to the uncertainty estimated using GUF.  相似文献   

11.
A pinhole orifice with a known conductance can be used as a secondary flow standard. Commercially available laser-drilled pinhole orifices with diameters ranging from 1.0 μm to 50 μm can have molecular-flow conductances ranging from about 0.1 μL/s to 200 μL/s for N2 at 23 °C. Gas flows of 10−11–10−6 mol/s can easily be produced by applying an upstream pressure in the range of 1–105 Pa. Accurate measurements of the orifice conductance as a function of pressure are required to use the pinhole orifice as a basis of a flowmeter. We use a constant-pressure flowmeter to make accurate measurements of the conductance of a 20 μm orifice as a function of pressure for gas flows of Ar and N2 into vacuum. We present results of these conductance measurements for an orifice with a nominal diameter of 20 μm. The N2 conductance of this orifice ranged from 30 μL/s to 60 μL/s over the range of pressures investigated, and was measured with an uncertainty of better than 0.2% (k = 2) for upstream pressures greater than 10 Pa.  相似文献   

12.
Since November 2010, NPL India’s force scale has been complemented in the range from 10 kN to 1 MN by a further force standard machine. This automatically working 1 MN force standard machine utilizes a lever amplification of a 100 kN mass stack and enables low relative expanded uncertainties of smaller than 9 × 10−5 on the lever, and 2 × 10−5 on the deadweight side. In this paper, the constructional design of the machine is described. According to the new EURAMET Calibration Guide, a model for the uncertainties is developed.Supplementary to this, results from comparison measurements of the new NPL India machine with PTB´s force standard machines are presented.  相似文献   

13.
The calibration and error compensation techniques for an Articulated Arm Coordinate Measuring Machine (AACMM) with two parallel rotational axes are proposed. An improved six-parameter D–H model is established. The reversal techniques are used to calibrate the parallelism errors, arm lengths and zero position of the AACMM. The effects of the bending and torsion deformations caused by the gravity of the arms are removed. The experiments prove that the calibration method is simple and the measurement expanded uncertainty (2uc2uc) of the developed AACMM with a measuring range of (∅200–∅1000 mm) × 250 mm is less than 10 μm after error compensation.  相似文献   

14.
We present a new method for characterizing a controlled-clearance piston gauge as a primary pressure standard. This method requires operating the piston gauge to jacket pressures of over 80% of the system pressure. We present measurements on a hydraulic piston gauge with a 290 MPa maximum pressure and a nominal piston diameter of 3.27 mm. Measurements showed that the cylinder becomes stiffer as the jacket pressure increases, and that non-linear models of the Heydemann–Welch parameters improve the determination of the effective area. The relative standard uncertainty in the effective area of the piston gauge ranges from 16.0 × 10−6 to 17.6 × 10−6, and the agreement to the present NIST pressure scale is within the standard uncertainty.  相似文献   

15.
Finite element analysis methods were developed and applied to gas piston–cylinder units (PCUs) of piston- and cylinder-floating configuration (2, 5, 10 and 20) cm2 nominal effective area, operated in gauge and absolute mode at pressures (0.06–7.5) MPa to determine their zero pressure and pressure-dependent effective areas, as well as pressure distortion coefficients (λ) with associated uncertainties. Real dimensional properties of the PCUs were used. λ were found to be independent of gas (ideal, N2, He) within the viscous flow model, but strongly dependent on the gap shape, operation mode and elastic properties. Results demonstrate good agreement for λ, with its uncertainty for different PCUs varying between (0.03 and 0.21) × 10−6 MPa−1 corresponding to maximum relative uncertainties in pressure of (0.07–0.34) × 10−6.  相似文献   

16.
This paper describes a measurement method developed at National Institute of metrological Research (INRIM) to calibrate picoammeters in dc current from 100 pA to 100 nA. The current source is based on a traceable to the dc resistance national standard 10 × 100 MΩ Hamon resistor developed at INRIM and on a traceable to the dc voltage national standard high precision dc voltage calibrator. The expanded uncertainties of the method for the calibration of picoammeters span from 9.4 × 10−4 for the gain of a picoammeter at 100 pA to 4.0 × 10−4 for the gain at 100 nA. A detailed uncertainties budget at 10 nA level and the results of a comparison with a different technique are also reported.  相似文献   

17.
18.
In high accuracy radius of curvature (ROC) measurement, significant discrepancy may exist in results on the same optical surface obtained by different techniques. Metrological standard sphere is a potential solution to this problem. Mathematical models are built up to characterize the relationship between the ROC of standard spheres and the roundness error as well as the aperture angle. Equations for calculating the uncertainty of ROC are derived and tested on several ROC measuring methods. The reason for the inconsistency between results of different techniques is analyzed and solutions are proposed. A method is developed which can remarkably reduce the uncertainty of ROC. Experiments are carried out on a set of high quality spheres whose diameters are from 11 mm to 93 mm and roundness below 0.1 μm, measured by instruments with relative accuracy of 10−5–10−6, which are a length measuring machine, a profilometer and a homemade differential confocal system. Relative uncertainties of ROC are calculated and analyzed against several factors. Experimental results show good consistency with theoretical analysis. Approaches to trace the ROC to the metrological length standard area discussed.  相似文献   

19.
Effects of Co content and WC grain size on wear of WC cemented carbide   总被引:1,自引:0,他引:1  
Hiroyuki Saito  Akira Iwabuchi 《Wear》2006,261(2):126-132
WC cemented carbides are used extensively to improve abrasion resistance. Co content and WC grain size influence the mechanical properties of the cemented carbides. In this study, the effects of Co content and WC grain size of cemented carbide on wear were examined. We prepared 13 different cemented carbides with different Co content and WC grain size. Wear tests were carried out against 0.45% carbon steel under dry condition at 98 N and 232 mm/s. From the results, we found that wear increased with both Co content and WC grain size. Specific wear rate of the cemented carbides tested was in the range of 10−7 mm3/(N m). We discussed the wear properties with hardness and the mean free path of the cemented carbide. These two parameters alone cannot explain the wear property.  相似文献   

20.
The aim of this communication is to present the performances of 5 MHz distributed ultra-stable system, based on ultra-stable Boitiers à Vieillissement Amélioré (BVA) oscillator. We demonstrated flicker frequency modulation (FFM) floor better than 4.5 × 10−14 ± 2.5 × 10−15 at 12 s with an intrinsic noise floor about 6 × 10−15 at 1 s with a τ−1/2 time integration dependence slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号