首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous titania (TiO2) sheets were prepared by aqueous tape casting. In slurry preparation, ammonium polyacrylate, polyvinyl alcohol, and polyethylene glycol were used as dispersant, binder, and plasticizer, respectively. The properties of slurries were characterized by ζ-potential, sedimentation test, and rheological behavior. The influences of sintering temperature on the open porosity, phase composition, and microstructure of the specimens were studied. The open porosity of the specimens ranged from 44% to 58%. The results indicate that the photocatalytic efficiency of specimens is closely related to the phase composition, the open porosity as well as the grain size of TiO2 sheet. The porous TiO2 sheets have lower efficiency than TiO2 powder; however, the porous sheets do not result in the secondary contamination problem.  相似文献   

2.
A new mesophase orientation has been established in TiO2 thin films formed by self-assembling of a poly(ethylene oxide)- b -poly(propylene oxide)- b -poly(ethylene oxide) triblock copolymer (Pluronic F127). They were then characterized by using scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, and X-ray diffraction. This new mesophase was identified and indexed as a body-centered orthorhombic mesophase structure with the (001) plane parallel to the substrate. It may well originate from a body-centered tetragonal structure, orienting with the square base perpendicular to the substrate. The mesophase then underwent a uniaxial contraction in the direction normal to the substrate upon drying and thermal treatment. As a result, the in-plane parameters were preserved whereas the out-of-plane parameters were markedly reduced by heating.  相似文献   

3.
Thin films of titania have been prepared by spin coating on fused silica, Si(100), and rutile(110), starting with a sol–gel process. The alkoxide solution was chelated with diisopropanolamine, and the resulting precursor solution was hydrolyzed prior to coating. Oriented rutile films were obtained on fused silica and Si(100), while epitaxially oriented film was formed on rutile (110). X-ray diffraction results indicated that the as-deposited films transformed to rutile via anatase with increasing temperature. The phase transformation temperature was found to be dependent on the substrate, and it was in general higher on the substrates than that observed for the gel powder. Microstructural studies revealed that these films consisted of finely dispersed grains of 0.05 to 0.15 μm in size.  相似文献   

4.
Titania coatings were prepared by spin coating anhydrous titanium ethoxide solutions onto Si substrates. During deposition, Ti ethoxide in the solution layer reacted with atmospheric moisture to form precipitated particles. The resulting microstructures were composed of a network of particles and particle clusters. The induction time for precipitation, the particle diameter, and the size and packing of particle clusters were influenced by the Ti concentration in the sol and the spinning rate used for deposition. Individual particle sizes ranged from ∼150 to 250 nm. Smaller particles and more compact particle clusters were characteristic of coatings prepared from solutions with lower Ti concentrations and those prepared using faster spinning rates. Asdeposited coatings were amorphous and crystallized into the anatase phase at ∼400°C. Transformation to the rutile phase began at ∼850°C, and the transformation rate was influenced by the microstructure.  相似文献   

5.
6.
We report a nanoporous TiO2 thin film prepared using a supersaturated aqueous solution containing peroxotitanium complex ions. The film morphology can be regulated by chemical kinetics, which was partially controlled by solution conditions such as the concentrations of starting materials, pH values, and the temperatures of the solutions. Porous films with various morphologies from particulate to curved sheet shaped were prepared on different substrates including Si, polymers, and glass. Porous microstructures of films permitted us to prepare a crack-free film 2–3 μm in thickness. These films were still amorphous under the present treatment conditions. Dye-sensitized solar cells using annealed (anatase) films of different morphologies as electrodes yielded conversion efficiency ranging from 1.3% to 3.1%. Improvement in performance may be achieved by either increasing the film thickness or inducing crystallization in solutions.  相似文献   

7.
Uniform CeO2 / TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via the sol–gel method. The samples were characterized using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The surface state analysis by means of X-ray photoelectron spectroscopy (XPS) shows that the Ti element mainly exists as a chemical state of Ti4+, while the Ce element exists as a mixture of Ce3+ and Ce4+ oxidation states. The photocatalytic degradation of methyl orange (MeO) in CeO2 / TiO2 suspension was investigated. The results indicate that the CeO2/TiO2 nanocomposites show higher photocatalytic activity than pure TiO2. Photodegradation of MeO can be improved by increasing the Ce/Ti molar ratio in the initial 15 min.  相似文献   

8.
TiO2/SnO2 nanonecklace-structured hybrid nanofibers have been prepared via an electrospinning method. These hybrid nanofibers are characterized with SnO2-rich beads and pure TiO2 chains. It is found that TiO2 in the beads shows a rutile structure, and the one in the chains is entirely composed of anatase phase. This novel microstructure enhanced the photocatalytic activity, as well as its ideal recyclable character. We believe that this fire-new type of nanofiber may potentially serve as a new generation photocatalyst in environmental remediation.  相似文献   

9.
Low-temperature growth of well-crystallized titania thin films with controlled nanofeatures are of great interest because of their potential uses in catalysts, gas sensors, photovoltaic cells, photonic crystals, etc. This paper reports the synthesis of a well-crystallized, pure rutile monolayer consisting of well-aligned nanorods with average diameters of ca. 25 nm and an aspect ratio of ca. 6 through a simple solution approach at a low temperature of 80°C. The monolayer nanorods precipitate from the precursors that were obtained through the reaction between metallic titanium and hydrogen peroxide solutions at 80°C for 24–60 h. The nanoporous titania thin layer derived by oxidizing the titanium substrate with hydrogen peroxide at 80°C for 10 min facilitates the growth of the monolayer rutile TiO2 nanorod films.  相似文献   

10.
Atomic layer deposition (ALD) has been successfully utilized for the conformal and uniform deposition of ultrathin titanium dioxide (TiO2) films on high-density polyethylene (HDPE) particles. The deposition was carried out by alternating reactions of titanium tetraisopropoxide and H2O2 (50 wt% in H2O) at 77°C in a fluidized bed reactor. X-ray photoelectron spectroscopy confirmed the deposition of TiO2 and scanning transmission electron microscopy showed the conformal TiO2 films deposited on polymer particle surfaces. The TiO2 ALD process yielded a growth rate of 0.15 nm/cycle at 77°C. The results of inductively coupled plasma atomic emission spectroscopy suggested that there was a nucleation period, which showed the reaction mechanism of TiO2 ALD on HDPE particles without chemical functional groups. TiO2 ALD films deposited at such a low temperature had an amorphous structure and showed a much weaker photoactivity intensity than common pigment-grade anatase TiO2 particles.  相似文献   

11.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

12.
The solubility of TiO2 in tetragonal ZrO2 is 13.8±0.3 mol% ui 1300°C, 14.9±0.2 mol% at 1400°C, and 16.1±0.2 mol% at 1500°C. These solid solutions transform to metastable monoclinic solid solutions without compositional change on cooling to room temperature.  相似文献   

13.
Barium strontium titanate, (Bax,Sr1-x TiO3, thin films of various compositions were prepared by a sol-gel method. Solutions consisting of acetate powders and titanium IV isopropoxide in a mixture of acetic acid and ethylene glycol were spin-coated onto silicon and platinum-coated silicon substrates. Processing parameters were optimized to develop stable solutions which yielded films with relatively low crystallization temperatures. It was determined that ethylene glycol was a necessary component of the solution to increase stability to precipitation and to decrease the crystallization temperature of the films. The grain size of the films varied with annealing temperature and atmosphere and directly affected the dielectric properties. A dielectric constant of 400 and a dissipation factor of 0.04 were measured at 1 kHz for (Ba0.8,Sr0.2) TiO3 films heated to 700°C for 1 h with a thickness of approximately 400 nm. Films of this composition maintained low leakage current densities for extended time periods when measured at an applied field of 75 kV/cm.  相似文献   

14.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

15.
The formation of TiO2 powders by oxygenolysis of TiCI4 was studied with emphasis on the effects of reaction conditions on the particle size of the products. The particle size of TiO2(anatase) decreased with increasing reaction temperature or O2concentration and with decreasing TiCI4 concentration. The results are compared with those for the oxygenolysis of AlBr3and SiCI4. It was found that the reactivity of metal halides with O2 is closely related to the ease of dissociation of the first halogen atom.  相似文献   

16.
Titanium dioxide and zinc oxide films were fabricated by spin-on and dip-coating methods. Both types of films exhibited columnar grains when the single coating was thin, ∼10 nm. The columnar TiO2 films were dense, as confirmed by their density values calculated from the refractive index and TEM results. The addition of Al cations into the ZnO suppressed grain growth, because Zn had a lower diffusivity in the doped films. The doped ZnO films had nearly the same electrical resistivity as that of the undoped films.  相似文献   

17.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

18.
Titanium diboride can be produced by ball-milling a mixture of TiO2, B2O3, and Mg metal for between 10 and 15 h. The reaction was found to be completed during the milling with no evidence of residual Mg. The unwanted phase, MgO, was readily removed by leaching in acid. The leached powder obtained after 15 h milling had a particle size of <200 nm and was highly faceted. The particle size decreased to ∼50 nm after 100 h milling and seemed to be relatively monodisperse. Scherrer calculation of the crystallite size showed that the product particles were probably single crystal.  相似文献   

19.
20.
Amorphous lithium electrolyte thin films, xLi2O·ySiO2·zP2O5, were deposited by rf magnetron sputtering of pure and mixed-phase lithium silicate, lithium phosphate, SiO2, Li2O, and Li2CO3 targets, and their compositions were determined using proton-induced y -ray emission spectroscopy, energy-dispersive X-ray analysis, Rutherford backscattering spectrometry, and atomic-emission spectroscopy. The deposition conditions were chosen to assure thermalization of the sputtered flux, which proved to be necessary in order to obtain a homogeneous distribution of Si and P in the films. Optical absorption and ac impedance measurements showed that glass-in-glass phase separation occurred in a large SiO2-rich domain of the composition diagram. In contrast to bulk glasses, all of the Li2O–SiO2 films were phase-separated, including those with lithia contents larger than lithium disilicate. High-performance liquid chromatography measurements revealed that, analogous to bulk glasses, the addition of SiO2 to Li2O-P2O5 compositions reduced the number of phosphate anion dimers, trimers, and higher anion polymers in the films through the formation of -Si-O-P-bonds. However, in contrast to bulk glasses, the distribution of phosphate anion polymers followed closely the Flory distribution, with the fraction of anion polymers decreasing monotonically with increasing chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号